Как сделать заземление в доме или бане

Содержание

Правила заземления оборудования на производстве

Заземление цеха является обязательным требованием для обеспечения защитных мер электробезопасности и обеспечивается присоединением электроустановок (шкафов управления, корпусов электродвигателей, станков и т.п.) к заземляющему устройству (ЗУ), состоящее из заземлителя и заземляющих проводников. Для заземления оборудования цеха на пром. предприятиях используются различные виды заземлителей — естественные и искусственные. Первые представляют собой проложенные непосредственно в земле металлические трубопроводы и металлоконструкции самого цеха, а вторые — вертикальные и горизонтальные заземлители (стальные уголки, стержни и трубы), которые специально применяются для заземления.

Как осуществляется заземление в цехе?

В соответствии с ПУЭ, все электроустановки необходимо заземлять путем присоединения корпусов оборудования или отдельных элементов установки к заземляющему устройству в соответствии со схемой заземления цеха (см.рисунок).

Однако, для того чтобы ЗУ выполняло свою защитную функцию, перед его реализацией выполняется проект молниезащиты и заземления производственного цеха. В проекте производятся расчеты молниеприемника, а так же сопротивления вертикальных и горизонтальных электродов, полное сопротивление ЗУ, исходя из удельного сопротивления грунта, размеров вертикального (длина, диаметр) и горизонтального (длина, ширина) электродов, а так же их заглубления.

Монтаж заземления цеха

Далее в соответствии с проектом, выполняется монтаж заземления цеха. Вначале снаружи здания роют траншею, в которую забиваются вертикальные электроды так, чтобы верхняя их часть выступала со дна траншеи на 200 мм. Далее к ним привариваются горизонтальные заземлители, при этом сварные швы, находящиеся в земле, должны быть покрыты битумом. После сварки ЗУ соединяются с главной заземляющей шиной (ГЗШ), при помощи гибкого изолированного или неизолированного проводника расчетного сечения, например провод ПуГВ, который подключается при помощи болтового соединения. Кроме того, к ГЗШ так же производится подключение защитных проводников и проводников системы уравнивания и выравнивания потенциалов.

Схема заземляющего устройства

Заземление производственного цеха

Внутри цеха в качестве проводников для заземления применяются металлические конструкции, металлические оболочки и экраны кабелей, стальные трубы электропроводки и трубопроводы. На предприятиях, где невозможно использовать элементы самого здания, в соответствии с проектом выполняется контур из стальной полосы, проложенной открыто по стенам на расстоянии 0,4–0,6 мм от пола по периметру производственного цеха (контур заземления в цеху) и соединенный с ГЗШ.

К данному контуру или к ГЗШ производится подключение всех электроустановок (станков, электродвигателей и т.п. оборудования), при этом заземляющий проводник выбирается сечением, что и основные жилы кабеля или в соответствии с ПУЭ таблицей 1.7.5.

пуэ

Таким образом, выполняется заземление станков и пр. технологического оборудования в цеху под одной системой, которая обеспечивает защиту от нахождения их электропроводящих частей под напряжением.

Важно отметить, что защитное заземление может не выполняться для электроприборов на напряжение до 42 В переменного тока и 100В постоянного тока.

Заземление электроустановок – как его делать правильно?

заземление электродвигателя схема

Работа электрических приборов всегда связана с таким опасным для человека явлением, как напряжение. Выход из строя оборудования часто сопровождается короткими замыканиями, либо возникновением перегрузок.

Электрический ток, в результате неисправности оборудования, может проходить через непредназначеннуюо для этого часть. От прикосновения к корпусу оборудования под напряжением человек получает удар электрическим током. Последствия могут нанести вред здоровью и поставить угрозу для жизни человека.

Для защиты электроустановок от поломок, а человека от опасного воздействия электрического тока применяют заземление. Заземление электроустановок осуществляется за счет электрического соединения с землей или иными элементами металлических частей, не предназначенных для проведения тока.

электроустановки фото

Заземление оборудования может быть двух видов:

Защитное заземление включает в свою конструкцию сам заземлитель, а также проводники. В свою очередь заземлители могут быть естественными и искусственными. К первым относят металлические элементы в конструкции зданий, объектов, которые имеют соединение с землей.

Искусственными являются схема из металлических труб, штырей, уголков, ввинченных в землю и имеющие между собой соединение из полос или проволоки.

Заземляющими проводниками выступают шины из стали или меди, они создают соединение между оборудованием и непосредственно заземлителем. Крепят шины болтами или сварочным способом.

Заземление электродвигателя

Установка электродвигателя по всем нормам и правилам требует проведения работ по заземлению. Для этого проводят расчеты сопротивления тока, которое переходит с двигателя в землю.

После завершения монтажа оборудования, делают замеры сопротивления, на основе полученных данных определяется число заземляющих элементов.

К заземлению электродвигателя приваривают металлические пруты и углубляют в землю на 50 см. Соединительные элементы, электроводы, подключают параллельно. Заземляющий контур делают по периметру, так чтобы охватить двигатель.

Заземление электроустановок

заземление электроустановок фото

Документ определяет основные системы заземления. Рассмотрим варианты, установленные ПУЭ заземления установок подробно:

Данные системы заземления отличаются принципом построения и количественным применением заземляющих стержней. Буквы характеризует заземление источника питания и элементов оборудования.

Для источников обозначением является первая буква, для электроустановок вторая:

По ПУЭ перечисленные способы заземления электроустановок применяется для устройств с напряжением до 1000 В. Для систем с выше 1000 В применяются иные системы заземления.

Заземление электроустановок регламентируется ГОСТом, в зависимости от типа оборудования.

Заземление установок на промышленных предприятиях

Медная шина заземления фото

Производственные предприятия сталкиваются с такой ситуацией, когда напряжение в корпусе поврежденного агрегата проявляется не только между открытыми частями и землей, но между корпусами разных приборов, корпусом и металлическими составляющими здания, трубопроводами из металлических материалов и другие соприкосновения.

В этом случае на промышленном предприятии должна быть установлена целая система заземления, охватывающая и связывающая между собой элементы оборудования, которые могут проводить ток, и металлические части технологических оборудований и здания в целом. Эти мероприятия позволят уровнять потенциалы всех элементов цехов.

Таким образом совершается заземление станков в цеху под одной системой. Также к заземлению подключаются технологическое оборудование, чтобы избежать аварийных ситуаций с нахождением их частей под напряжением.

Защитное заземление может не выполняться на приборах с номиналом напряжения 42 В для переменного тока, для постоянного тока показатель должен составлять 100 В.

Заземлению на промышленных предприятиях подлежат корпуса машин, станков, агрегата, обмотки, приводы, каркасы, конструкции из металла, оболочки силовых кабелей, проводов.

Защита передвижных установок

Рассматриваемые ранее методы применимы к стационарному оборудованию. Заземление передвижных электроустановок выполняет с учетом требований к сопротивлению или к напряжению. Заземлитель устанавливается за счет соблюдений значений сопротивления, которые не должны быть более 25 Ом.

Ударное заземление для передвижных электроустановок

В некоторых случаях возможно не использование местного заземляющего устройства для оборудования с автономным питанием с нейтралью изолированной от земли.

Чаще всего применяется для оборудования, которое не питает другие установки, а также когда источники питания имеют свои заземлители и все части электроустановки соединены с корпусом источника питания.

Оборудование с автономными источниками питания и изоляцией для нейтрали должны быть оснащены контролем сопротивления изоляции. Также необходим постоянный доступ для осуществления проверочных работ исправности функций изоляции.

Установка и безопасность

Разнообразие электроустановок и условий по их эксплуатации создает большое количество вариаций, связанных с монтажом оборудования, ремонта и правил по работе с приборами и агрегатами.

Использование электроустановок в работе промышленных предприятий, организаций, электросистем зданий и объектов должно соответствовать стандартам и правилам и давать гарантию электробезопасности.

Существующие меры позволяют избежать нежелательных пробоев, поломок оборудования, создания аварийных ситуаций, а также ситуаций с угрозой здоровью и жизни человека.

Заземление и применяемые защитные меры электробезопасности должны быть осуществлены в соответствии с требований нормативных актов, правил требований, стандартов.

Все существующие способы заземления электроустановок можно объединить выполнением условий по соединению частей и элементов электроустановок, которые могут проводить ток и быть под напряжением, с заземляющим проводником в виде шины и контуром заземления.

Заземление проводится для всех составных частей, которые могут при пробое изоляции оказаться под действием напряжения. Для различных зданий, предприятий может проводиться заземление одной установки, а в некоторых случаях объединение всех компонентов одного цеха для заземления.

Последний вариант используется, чтобы обезопасить от пробоя различные установки и станки, технологическое оборудование, которые могут соприкасаться и взаимодействовать.

Работы по осуществлению заземлений электроустановок должны совершаться высококвалифицированными специалистами. От правильности совершения работ по монтажу заземления зависит работа всех электроустановок, которая влияет на функционирование всего здания или предприятия.

Неправильное исполнение заземления приводит к появлению напряжения в тех частях устройств, на которых оно не предусмотрено по правилам эксплуатации. Такая небезопасная работа оборудования может привести к остановке, поломке, а также привести все устройство в непригодное состояние.

Заземление электроустановок

Заземление электроустановок – обязательная составляющая комплекса мер по защите промышленного оборудования и работающих на нем людей от поражения током. С учетом существующего разнообразия электротехнических приборов и агрегатов вопросам их безопасной эксплуатации уделяется повышенное внимание. Каждый тип заземляемого оборудования имеет свои особенности, вынуждающие пользователей сетей принимать специальные защитные меры. В соответствие с правилами заземления электроустановок и их устройством для этих целей применяются особым образом организованные системы защиты.

Классификация систем заземления

Общепринятая классификация систем заземления осуществляется по следующим основным признакам:

  • Состояние нейтрали электросети (заземленное или изолированное).
  • Способ ее прокладки от подстанции с понижающим трансформатором до конечной электроустановки потребителя.
  • Особенности подключения нагрузки к нейтральной жиле.

Основным документом, согласно которому производится классификация этих систем, являются ПУЭ (правила устройства электроустановок). В них подробно рассматриваются характерные признаки, согласно которым принято различать действующие защитные системы. Для их обозначения применяются английские буквенные символы T, N, I, C и S, которые расшифровываются как «заземление», «нейтраль», «изолированное», «общая» и «раздельная».

Обратите внимание: По данной маркировке удается определить, какой способ защиты источника тока применен в данной системе и какие схемы защитного заземления оборудования могут быть использованы на потребительской стороне.

Основные системы заземления

При обустройстве действующих линий энергоснабжения в России традиционно применяются следующие основные системы:

  • TN-C, из обозначения которой следует, что на всем протяжении трассы нулевой рабочий N и защитный PE проводники объединены в общую шину PEN (C – это «common»).
  • TN-S, означающая раздельную прокладку упоминавшихся выше проводников («Select»).
  • TN-C-S, из названия которой следует, что на части трассы проводники PE и N объединены, а начиная с какого-то места они прокладываются раздельно.

На практике также встречаются редко используемые системы TT и IT, применяемые только в исключительных случаях. Такой уникальный способ построения заземляющей структуры как система с изолированным нулем, например, востребован при электроснабжении сооружений, где необходимо обеспечить высокий уровень безопасности. В частности, это касается электрооборудования, устанавливаемого на горнодобывающих шахтных предприятиях. Объясняется это тем, что при подземных работах нередки случаи скопления взрывоопасных газов, а система IT, особенностью которой является пониженное искрообразование, в этом случае является самой безопасной.

Требования к заземлению электроустановок до 1000 Вольт

Заземление оборудования – это комплекс технических мероприятий, позволяющих получить надежное электрическое соединение между защищаемыми корпусами электроустановок и землей. Оно организуется с целью защиты оперативного персонала и работающих на оборудовании людей от случайного токового удара.

В соответствии с требованиями ГОСТ 12.1.030-81 защитное заземление электроустановки следует выполнять:

  • при номинальном напряжении 380 В и выше переменного тока и 440 В и выше постоянного тока – во всех случаях;
  • при номинальном напряжении от 42 В до 380 В переменного тока и от 110 В до 440 В постоянного тока при работах в условиях с повышенной опасностью и особо опасных по ГОСТ 12.1.013-78.

Важно! При правильно обустроенной системе заземления попавший на корпус станка, например, опасный потенциал не причинит прикоснувшемуся к нему человеку никакого вреда.

Принципиальная схема заземления электроустановки

Объясняется это тем, что, при пробое изоляции основная часть токового заряда стечет по заземляющей шине в защитный контур, сопротивление которого на порядок ниже, чем тот же показатель для тела человека.

Естественные заземлители

Согласно правилам ПУЭ, корпуса технологического оборудования и других приборов должны подключаться к естественным или искусственным заземлителям (ИЗУ). При реализации первого из этих способов традиционно используются следующие подсобные элементы:

  • металлические каркасы проложенных в земле конструкций, имеющие прямой контакт с ней;
  • металлические кожуха кабелей, прокладываемых непосредственно в грунте;
  • обычные металлические трубы (за исключением газовых и нефтепроводов);
  • рельсы железнодорожных путей.

Обратите внимание: Использование готовых конструкций существенно упрощает решение проблемы заземления, упрощая этот процесс.

Кроме того, их использование при организации эффективного заземления позволяет несколько снизить затраты на его обустройство.

Важность сопротивления стеканию току

Основное требование к заземлениям до 1000 Вольт – их способность создать надежную цепочку для стекания аварийных токовых зарядов в грунт. Ее оценивают величиной сопротивления, которое приходится преодолевать токам замыкания на землю.

Направление растекания тока в землю

Согласно нормативным документам (ПУЭ, в частности) сопротивление заземления (сопротивление растеканию электрического тока) должно быть:

  • в частных домах с напряжением питания 220 и 380 Вольт, должно составлять не более 30-ти Ом.
  • для промышленного оборудования (трансформаторов подстанций, в частности, или генераторов и сварочных аппаратов) не должен превышать 4-х Ом.
  • в отношении источника тока (генератора или трансформатора) не более 2, 4 и 8 Ом соответственно, при междуфазных напряжениях 660, 380 и 220 В трехфазного источника питания или 380, 220 и 127 В однофазного источника питания.

Чтобы достигнуть нормируемых ПУЭ значений сопротивления, потребуется принять специальные меры. Обычно они сводятся к следующим типовым процедурам:

  1. увеличение площади соприкосновения составляющих устройств заземления с грунтом;
  2. повышение качества контактов в местах сочленения отдельных элементов и медных соединительных шин;
  3. улучшение проводимости самой почвы (за счет постоянного увлажнения или добавления соляного раствора, например).

Теми же требованиями предписывается периодически (не реже одного раза в 6 лет) проверять сопротивление заземляющего контура на соответствие его величины утвержденным нормам.

Работа заземления при нарушении защитной изоляции токоведущих частей

Самая распространенная неисправность, встречающаяся при эксплуатации электрооборудования – замыкание фазы на металлический корпус из-за разрушения защитной изоляции.

Дополнительная информация: В современных бытовых приборах, оснащенных импульсными источниками питания с вилкой евро стандарта, опасный потенциал может постоянно присутствовать на металлическом корпусе.

В зависимости от того, какие защитные меры приняты при работе с оборудованием, возможны следующие степени безопасности пользователя:

  1. Самый опасный вариант – когда металлический корпус прибора не заземлен, а УЗО совсем не установлено. Попадание фазы на проводящие ток части никак не проявляется, кроме как ощутимый удар при случайном прикосновении.
  2. В отсутствие УЗО корпус подключен к контуру установленного заземления, а ток утечки по цепи стекания очень велик. В этом случае прибор сработает мгновенно и отключает питающую линию или отдельную ее цепочку.
  3. При наличии УЗО корпус не заземлен, что обнаруживается только при протекании тока утечки, который вызовет срабатывание устройства защиты. За время порядка 200-300 миллисекунд прикоснувшийся к прибору человек ощутит лишь легкий удар током.
  4. И, наконец, самый безопасный вариант предполагает заземление корпуса и одновременную установку в данную ветку отдельного УЗО.

О первом случае, связанном с отсутствием специальных защитных средств, нечего и говорить, а вот второй вариант не совсем безопасен. Это объясняется тем, что при большом сопротивлении переходов и значительных номиналах предохранителей остаточный потенциал на корпусе прибора очень опасен для работающего человека. Так, при сопротивлении заземляющей конструкции в 4 Ома и предохранителе номиналом 25 Ампер он может достигнуть 100 Вольт.

Важно! В последнем случае два защитных устройства дополняют друг друга и нивелируют возможные неполадки в одном из них.

При попадании фазы на корпус, а через него – на заземляющий проводник ток благополучно стекает в землю. Одновременно с этим УЗО мгновенно реагирует на утечку и отключает линию и электроустановку, исключая возможность поражения работающего на ней персонала.

Работа заземления при неисправностях электрической части оборудования

Помимо этого, если ток утечки существенно превышает порог срабатывания установленного в цепи предохранителя – может сработать и сам защитный элемент, дублируя действие УЗО. Какой из этих двух приборов отключит цепь первым – зависит от их быстродействия и величины тока стекания на землю (при этом не исключается их одновременное срабатывание).

Защита станков и электрооборудования в цехах

В соответствие с действующими правилами ПУЭ различные виды заземлений в электроустановках до 1000 Вольт отличают по принадлежности их к той или иной системе. А по типу заземляемых устройств различают следующие варианты:

  • Защита типового станочного оборудования.
  • Заземление электродвигателей и сварочных аппаратов.
  • Защита передвижных установок и эксплуатируемых электроприборов.

В этом разделе рассматривается первый пункт из перечня, касающийся станков и другого оборудования, устанавливаемого в заводских цехах.

Хорошо известно, что при работе на станочном оборудовании риск случайного попадания фазы на корпус достаточно велик. Чтобы правильно заземлить станок в цеху – потребуется разобраться со следующими моментами:

  1. Где проложен заземляющий контур в рабочей зоне.
  2. Какой толщины должна выбираться шина, применяемая для соединения корпуса станка с защитным контуром.
  3. В каком месте накладывается стационарное заземление.
  4. Какие заграждающие приспособления допускается использовать для ограничения доступа к опасным частям оборудования.

Рассмотрением всех этих вопросов должен заниматься цеховой электрик, который знаком с расположением элементов заземляющего хозяйства и полностью владеет информацией по порядку подсоединения корпуса станка к ЗУ. Он должен знать, в частности, что для заземления электрооборудования в его конструкции предусмотрена специальная точка, к которой подсоединяется заземляющая шина.

Правила заземления электродвигателя

Согласно действующим нормативам электродвигатели также подлежат обязательному защитному заземлению.

Обратите внимание: Исключением из этого требования является ситуация, когда корпус электродвигателя располагается на металлическом пьедестале, непосредственно связанном с грунтом.

Во всех остальных случаях его обязательно нужно будет соединить специальной медной жилой с заземляющим контуром (фото ниже).

Заземление электродвигателя

В ПУЭ особо отмечается, что такое соединение должен иметь каждый электродвигатель, независимо от их количества в данном электрохозяйстве.

Последовательное подключение нескольких агрегатов в заземляющую цепочку категорически запрещено (в этом случае при обрыве линии в одном месте заземления лишаются все двигатели).

Таблица сечений заземляющих проводников

Заземление сварочных аппаратов

При работе со сварочным оборудованием заземление его корпуса согласно требованиям ПУЭ также обязательно. Помимо этой части электрического агрегата заземляться должен один из выводов трансформаторной вторичной обмотки (к другой клемме подсоединяется держатель электродов). Заземляемый вывод на корпусе обозначается соответствующим значком и оснащается приспособлением, надежно фиксирующим протянутую от защитного контура шину.

Схема заземления сварочного аппарата

Величина переходного сопротивления защитного контура или ЗУ для сварочного оборудования не должна превышать 10-ти Ом. Если потребуется повысить электропроводимость заземляющей конструкции – увеличивают контактную площадь всех соединений, включая поверхность соприкосновения с землей.

Как и в случае с рассмотренными ранее электродвигателями последовательное включение сварочных аппаратов в заземляющую цепочку запрещено.

Защита передвижных установок

Все, что было рассмотрено ранее, традиционно относится к обычному стационарному оборудованию. Иной подход наблюдается при необходимости заземления передвижных электроустановок, для которых выполнение требований по переходному сопротивлению несколько затруднено. В связи с этим ПУЭ допускают повышение его величины до предельного значения, равного 25-ти Омам.

Обратите внимание: В отдельных случаях допускается в качестве заземления для передвижек применять имеющиеся на объекте стационарные ЗУ.

Последнее требование справедливо лишь для установок с автономным питанием, имеющим изолированную от земли нейтраль (в качестве примера может быть приведено ГРПШ).

Этот вид заземляющих устройств традиционно применяется для тех образцов оборудования, которые не являются источниками питания для остальных установок и не склонны к искрообразованию. Другая область их применения – передвижные агрегаты, оснащенные собственными стационарными заземлителями, не используемыми в данный момент. Передвижные установки с автономным питанием из-за возможного образования трущихся сочленений и изолированной от земли нейтрали подлежат регулярному освидетельствованию в части состояния защитной оболочки (изоляционного покрытия).

Читать статью  Устройство, принцип работы и схемы защитного заземления

Защита электроприборов

Для обеспечения требуемого уровня защиты при работе с электрическими приборами различного типа возможны следующие защитные меры:

  1. надежная защита открытых для общего доступа токоведущих частей;
  2. усиление защитной изоляции методом ее наращивания;
  3. ограничение доступности к корпусам оборудования.

Кроме того, для этих целей могут применяться пониженные напряжения (если это позволяют особенности конструкции).

Заземление электроустановок

Чтобы избежать нежелательных пробоев изоляции и попадания опасного напряжения на корпуса электроприборов используются следующие «классические» методы:

В отдельных случаях ограничение проявляется в том, что такие образцы электроаппаратуры не допускается эксплуатировать в особо опасных помещениях (влажных или с сильным запылением). Если наряду с заземлением применяются другие способы защиты работающих с приборами людей – они не должны взаимно исключать друг друга. Другими словами их действие не должно снижать эффективность уже имеющейся и работающей в этом месте защиты.

Применение элементов естественных заземлителей допускается только в ситуациях, когда исключена вероятность нанесения подземным конструкциям ощутимого ущерба, связанного с протеканием по ним аварийного тока.

Заземление и зануление

Для защиты человека от удара током в особо опасных условиях эксплуатации нередко используется принцип одновременного заземления и зануления электроустановок. Всем, кто не знаком со вторым понятием, следует знать, что зануление электроустановок – это умышленное соединение их корпусов с нейтралью подводящей силовой линии. Понять принцип его действия поможет ознакомление с тем, как реализуется это способ защиты на практике.

Суть зануления состоит в превращении случайного попадания сетевого напряжения на корпус установки (из-за повреждения изоляции, например) в однофазное короткое замыкание. Отсюда следует, что и рассматриваемое нами заземление и зануление, как системы, выполняют функцию защиты от поражения электрическим током. Но делают они это каждая по-своему (смотрите фото ниже).

Схема заземления и зануления

В одном случае (при заземлении) для получения цепочки стекания тока пробоя применяется отдельное заземляющее устройство, снижающее потенциал на корпусе прибора до безопасного уровня. Для «срабатывания» системы зануления тот же корпус электрически соединяется с нейтралью питающей сети.

Токопроводящие части электроустановок подлежат заземлению или занулению во всех случаях, когда защищаемое оборудование работает в помещениях повышенной опасности (с большой запыленностью и высоким уровнем влажности). Специалистам, занимающимся вопросами его защиты важно четко представлять себе отличие этих двух понятий. Кроме того им потребуется хорошо разбираться в том как правильно сделать контур заземления для данного образца оборудования.

Периодичность проверки

Для проверки текущего состояния ЗУ согласно требованиям ПУЭ проводятся периодические испытания заземляющих контуров. Они позволяют убедиться в соответствии их параметров (сопротивления стеканию тока, в частности) установленным нормативам.

Дополнительная информация: Для контроля текущего состояния ЗУ используются специальные измерительные приборы, подключаемые к нему по особым схемам.

В ПУЭ также оговаривается, что периодичность проверки (испытаний) действующих систем зависит от класса самого проводимого обследования. Так, визуальные осмотры заземляющих конструкций должны проводиться не реже одного раз в полгода. Если та же процедура сопровождается выборочным вскрытием почвы в вызывающих подозрения местах – проверки проводятся не реже раза в 12 лет. Нормы и сроки проверок для различных конструкций заземляющих устройств могут несколько отличаться от рассмотренных показателей (смотрите монографию Р. Н. Карякина под тем же названием).

В заключение отметим, что после ознакомления с предложенным материалом заинтересованный пользователь сможет четко представить себе, для чего нужно заземление и как оно обустраивается. Знание всех тонкостей этого вопроса поможет ему уберечь себя и своих близких от опасности поражения электрическим током. Кроме того, умение разбираться в них обеспечит сохранность эксплуатируемого на объекте электрооборудования.

Нажмите, пожалуйста, на одну из кнопок, чтобы узнать помогла статья или нет.

Рабочее и защитное заземление

Заземляющими принято называть устройства, способные обеспечить надежные пути стекания аварийного тока в землю. Необходимость в этом может возникнуть по самым разным причинам, основные из которых – создать условия для нормального функционирования электроустановки или гарантировать безопасность работающих на ней людей. Эти функциональные различия следует четко усвоить. Они помогут понять, что называется рабочими заземлениями и в чем их отличие от защитных мер. В рассмотренных ранее причинных определениях в первом случае используется рабочее или функциональное заземление, а во втором – его аналог.

Рабочее заземление

В отличие от защитного заземления, используемого исключительно в целях безопасности людей, рабочее заземление предназначается для того, чтобы гарантировать нормальную работу электрических приборов и устройств.

Обратите внимание: Эта его функция должна выполняться независимо от того, в каких условиях работает электрооборудование: в нормальных штатных или в аварийных.

Реализуется функциональное заземление самым непосредственным образом – через подсоединение металлических токопроводящих частей к так называемому «заземлителю». В качестве этой разновидности ЗУ допускается использовать подключенные к заземляющей конструкции молниеотводы, защищающие предприятия и другие объекты от грозы. Эти же устройства помогают уберечь действующее оборудование от наведенных (или индуцированных) ЭДС, представляющих ничуть не меньшую угрозу для него.

схема рабочего заземления через пробивной предохранитель
схема рабочего заземления с глухозаземленной нейтралью

В ряде случаев функциональное заземление организуется для того, чтобы создать условия для срабатывания специальных приспособлений пробивного типа (предохранителей, резисторов и подобных им).

Хорошо усвоив, что называют рабочими заземлениями, пользователь сможет понять не только их отличие от защитного, но и то, что эффективность его действия зависит от параметров конструкции ЗУ. Под ним в первую очередь понимается сопротивление цепи стекания тока в землю, величина которого согласно требованиям ПУЭ не должна превышать нормируемого значения (25-30 Ом).

Защитное заземление

Защитным заземлением называют умышленное соединение металлических нетоковедущих частей с землей или же ее аналогом с целью защиты людей от удара током.

Дополнительная информация: Функцию заземлителя в этом случае могут выполнять и естественные ЗУ, под которыми понимаются уже проложенные в земле элементы строительных конструкций и коммуникаций.

схема сети

С помощью искусственных и естественных заземляющих конструкций удается предотвратить поражение человека током в ситуациях, когда корпус оборудования или бытового прибора случайно оказывается под напряжением. В этом случае срабатывает принцип шунтирования аварийной цепи более низким сопротивлением, по которому опасный ток «уходит» в землю.

Согласно этому рисунку через тело прикоснувшегося к корпусу человека протекает лишь малая доля общего тока, а большая его часть «стекает» в грунт через параллельную цепь.

Чем они отличаются

Разницу между двумя этими видами сможет уловить только основательно изучивший их особенности человек. Для непрофессионала они с трудом различимы, поскольку чаще всего организуются с привлечением одних и тех же технических средств.

Отличия между рабочим заземлением и защитным заземлением проявляется не столько в технической части, сколько в том, для каких конкретных целей они организуются. В обоих случаях для обустройства ЗУ используются специальные приспособления (конструкции), способные отводить опасные токи на землю. И там и там потребуется присоединить корпуса приборов через толстую медную жилу к тому сооружению, которое выбрано для надежной защиты электрооборудования и людей.

Хорошо различимое отличие рабочего заземления от своего аналога состоит в следующем:

  1. функциональное заземление делается с целью защиты оборудования и приборов, подключенных к данной электрической сети, от выхода их из строя;
  2. для его реализации допускается использовать молниеотводы и распределенные системы выравнивания потенциалов, подключенные к местному заземляющему контуру;
  3. оно в меньшей мере, чем защитное, обеспечивает безопасность работающего на линии персонала и простых людей.

Хороший пример такой разницы – так называемые «переносные» или временные конструкции, применяемые исключительно для защиты работающих на отключенном оборудовании специалистов. К защите электроустановок они никакого отношения не имеют (последние отключены) и даже при случайной подаче в линию стороннего напряжения представляют угрозу лишь для человека. То есть это – чисто защитная мера.

Другим характерным отличием защитного заземления является обязательное присоединение к заземлителю все металлические части корпусов оборудования, то есть каркасы, рамы, стальные ограждения и тому подобное. Функцию самого заземлителя в этом случае могут выполнять как искусственно созданные конструкции, так и уже проложенные в земле стальные элементы коммуникаций (включая различные виды металлических труб и кабельных экранов).

Важно! Исключение составляют элементы газовых и нефтяных трубопроводов.

К частям оборудования, подлежащим обязательному рабочему занулению и заземлению относятся:

  • Приводы всех без исключения электрических аппаратов.
  • Корпуса работающих на объекте электрических машин, а также понижающих трансформаторов, используемых для питания переносных светильников.
  • Обмотки измерительных преобразователей, относящихся к разряду вторичных.
  • Стальные остовы и корпуса передвижных (переносных) электрических приемников.
  • Все открытые части работающего в данный момент оборудования.

Во всех этих случаях при невозможности организации заземления для снижения опасности поражения людей согласно ПУЭ используют электроприемники, рассчитанные на напряжение не более, чем 42 Вольта.

В заключение еще раз отметим, что различия двух типов заземлений в основном проявляются в их назначении и касаются технической стороны лишь не в значительной мере.

Правила заземления оборудования на производстве

ГОСТ Р 58882-2020

НАЦИОНАЛЬНЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ЗАЗЕМЛЯЮЩИЕ УСТРОЙСТВА. СИСТЕМЫ УРАВНИВАНИЯ ПОТЕНЦИАЛОВ. ЗАЗЕМЛИТЕЛИ. ЗАЗЕМЛЯЮЩИЕ ПРОВОДНИКИ

Grounding devices. Equation potentials systems. Grounders. Grounding conductors. Technical requirements

Дата введения 2021-01-01

Предисловие

1 РАЗРАБОТАН Обществом с ограниченной ответственностью «Научно-производственная фирма. Электротехника: наука и практика» (ООО «НПФ ЭЛНАП»)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 336 «Заземлители и заземляющие устройства различного назначения»

4 ВВЕДЕН ВПЕРВЫЕ

Правила применения настоящего стандарта установлены в статье 26 Федерального закона от 29 июня 2015 г. N 162-ФЗ «О стандартизации в Российской Федерации». Информация об изменениях к настоящему стандарту публикуется в ежегодном (по состоянию на 1 января текущего года) информационном указателе «Национальные стандарты», а официальный текст изменений и поправок — в ежемесячном информационном указателе «Национальные стандарты». В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ближайшем выпуске ежемесячного информационного указателя «Национальные стандарты». Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет (www.gost.ru)

1 Область применения

Настоящий стандарт распространяется на заземляющие устройства для объектов электроэнергетики (электрические станции и подстанции, линии электропередачи, распределительные пункты, переходные пункты и др.), электроустановок промышленных, жилых и административных зданий и сооружений, объектов связи и транспорта и устанавливает технические требования к системам выравнивания и уравнивания потенциалов, заземлителям и заземляющим проводникам, а также классификацию и типы заземляющих устройств.

Настоящий стандарт не распространяется на заземляющие устройства объектов связи и железнодорожного транспорта, если эти объекты не расположены на общей территории с электроустановками.

Настоящий стандарт обязателен к применению всеми организациями, осуществляющими проектирование, изготовление, приемку, испытания и эксплуатацию заземляющих устройств.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие стандарты:

ГОСТ 12.1.030 Система стандартов безопасности труда. Электробезопасность. Защитное заземление, зануление

ГОСТ 12.1.038 Система стандартов безопасности труда. Электробезопасность. Предельно допустимые значения напряжений прикосновения и токов

ГОСТ 10434 Соединения контактные электрические. Классификация. Общие технические требования

ГОСТ 21130 Изделия электротехнические. Зажимы заземляющие и знаки заземления. Конструкция и размеры

ГОСТ 24291 Электрическая часть электростанции и электрической сети. Термины и определения

ГОСТ 30331.1 (IEC 60364-1:2005) Электроустановки низковольтные. Часть 1. Основные положения, оценка общих характеристик, термины и определения

ГОСТ Р 50571.5.54/МЭК 60364-5-54:2011 Электроустановки низковольтные. Часть 5-54. Выбор и монтаж электрооборудования. Заземляющие устройства, защитные проводники и защитные проводники уравнивания потенциалов

ГОСТ Р 57190 Заземлители и заземляющие устройства различного назначения. Термины и определения

ГОСТ Р 58344 Заземлители и заземляющие устройства различного назначения. Общие технические требования к анодным заземлениям установок электрохимической защиты от коррозии

ГОСТ Р МЭК 60715 Аппаратура распределения и управления низковольтная. Установка и крепление на рейках электрических аппаратов в низковольтных комплектных устройствах распределения и управления

ГОСТ Р МЭК 62305-1 Менеджмент риска. Защита от молнии. Часть 1. Общие принципы

ГОСТ Р МЭК 62305-4 Защита от молнии. Часть 4. Защита электрических и электронных систем внутри зданий и сооружений

Примечание — При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования — на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю «Национальные стандарты», который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя «Национальные стандарты» за текущий год. Если заменен ссылочный стандарт, на который дана недатированная ссылка, то рекомендуется использовать действующую версию этого стандарта с учетом всех внесенных в данную версию изменений. Если заменен ссылочный стандарт, на который дана датированная ссылка, то рекомендуется использовать версию этого стандарта с указанным выше годом утверждения (принятия). Если после утверждения настоящего стандарта в ссылочный стандарт, на который дана датированная ссылка, внесено изменение, затрагивающее положение, на которое дана ссылка, то это положение рекомендуется применять без учета данного изменения. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, рекомендуется применять в части, не затрагивающей эту ссылку.

3 Термины и определения

В настоящем стандарте применены термины по ГОСТ 24291, ГОСТ 30331.1, ГОСТ Р 57190, а также следующие термины с соответствующими определениями:

3.1 вынос потенциала: Появление на коммуникациях, выходящих за пределы электроустановки, напряжений (по отношению к земле) выше допустимых значений.

3.2 гальваническая связь: Электрическое соединение двух объектов металлическим проводником с незначимо малым сопротивлением.

3.3 импульсный потенциал на заземляющем устройстве: Напряжение между какой-либо точкой заземляющего устройства и точкой на поверхности грунта, расположенной не ближе 20 м от рассматриваемой точки.

Примечание — Наибольший импульсный потенциал имеют точки, в которые вводится импульсный ток.

3.4 термическое воздействие: Нагрев заземляющих проводников и заземлителей протекающим по ним током электроустановки.

4 Сокращения

В настоящем стандарте применены следующие сокращения:

ВЛ — воздушная линия электропередачи;

ГЩУ — главный щит управления;

ЗУ — заземляющее устройство;

КЗ — короткое замыкание;

КЛ — кабельная линия электропередачи;

КРУ — комплектное распределительное устройство;

КРУЭ — комплектное распределительное устройство с элегазовой изоляцией;

ЛР — линейный разъединитель;

ОРУ — общеподстанционнное распределительное устройство;

ОПУ — общеподстанционный пункт управления;

РЗА — релейная защита и автоматика;

РПН — регулирование под нагрузкой;

РУ — распределительное устройство;

РЩ — релейный щит;

СИП — самонесущий изолированный провод;

ТСН — трансформатор собственных нужд;

ТН — трансформатор напряжения;

ТП — трансформаторная подстанция;

ТТ — трансформатор тока;

ЭС — электрическая станция;

ЭМС — электромагнитная совместимость.

5 Классификация и типы заземляющих устройств, заземлителей и заземляющих проводников

5.1 ЗУ классифицируют по следующим признакам:

а) по назначению:

— ЗУ электроустановок напряжением до 1 кВ;

— ЗУ электроустановок напряжением выше 1 кВ;

— ЗУ взрыво- и пожароопасных объектов;

— ЗУ высоковольтных испытательных лабораторий;

— ЗУ электрохимической защиты;

б) по выполняемым функциям:

— защитное заземление — для обеспечения электробезопасности;

— помехозащитное заземление — для обеспечения электромагнитной совместимости оборудования;

— молниезащитное заземление — для отвода в грунт токов молнии;

— рабочее заземление — для обеспечения требуемых режимов и надежной работы электроустановки, системы или оборудования.

5.2 Заземлители классифицируют по следующим признакам:

а) по типу исполнения:

— искусственные и естественные;

б) по конструктивному исполнению:

— продольные и поперечные горизонтальные;

— вертикальные (или наклонные);

5.3 Заземляющие проводники классифицируют по назначению:

— проводники системы уравнивания потенциалов;

6 Общие технические требования

6.1 В случае противоречий требований настоящего стандарта требованиям нормативных документов, указанных в разделе 2, приоритетными являются требования настоящего стандарта.

6.2 ЗУ должно изготовляться в соответствии с требованиями настоящего стандарта и стандартов или технических условий на ЗУ конкретного типа по технологической документации, утвержденной в установленном порядке.

Читайте также:

  • Как подключить шестирожковую люстру к одноклавишному выключателю
  • Светильник светодиодный уличный на столб с креплением
  • Установка розетки штепсельной полугерметический и герметический
  • Светильник на дуге крепления
  • Монтаж наружной розетки вико

Правилам правила заземления оборудования

Как сделать заземление в доме или бане

Андрей Ненастьев
электромонтер

Любая металлическая поверхность незаземленного электроприбора потенциально опасна.

Когда строят частный дом, заранее разрабатывают схему электропроводки. Одна из ее частей — заземление. Конечно, лампочки будут гореть, а чайник — работать и без заземления. Но если в стиральной машине протечет вода, напряжение появится на корпусе машинки и при соприкосновении человека может ударить током.

Чтобы этого не произошло, делают заземление. Я электромонтер и живу в частном доме, поэтому знаю, как сделать заземление с нуля, если только строите, или как все проверить, если покупаете готовый дом.

Вот о чем расскажу в статье:

  • Что такое заземление
  • Зачем нужно заземление
  • Схемы заземления
  • Устройство контура заземления и элементы
  • Виды контуров заземления
  • Расчет заземления
  • Правила и требования к контуру заземления
  • Как сделать монтаж контура заземления
  • Что лучше — купить готовый комплект заземления или сделать самостоятельно

Что такое заземление

Заземление — это соединение корпусов всех электроприборов в доме с землей через контур заземляющего устройства. Для этого во всей системе, включая кабель электроприбора, есть отдельная жила. Она идет от розеток через щиток в заземляющий контур, который вкопан в грунт. Прибор, подключенный к такой розетке, защищен: если он будет неисправен и на его металлических деталях появится напряжение, избыточный ток уйдет в землю. В худшем случае на корпусе останется небольшой, безопасный для человека заряд. При касании он будет ощущаться как легкое покалывание.

Жила в желто-зеленой оплетке — для заземления

Чем заземление отличается от зануления. Раньше заземление не делали: считали, что это дорого. Делали зануление: соединяли электроприборы с нулевой шиной в щитке и уже ее замыкали на землю. Вместо трехжильного кабеля — фаза, ноль, земля — использовали двухжильный, где есть только фаза и ноль.

Когда работает прибор, нулевой провод находится под напряжением, поэтому при занулении пробой на корпус прибора равносилен короткому замыканию. Сработает автомат в щитке — «выбьет пробки», а потом электричество выключится.

Зануление запрещено в жилых, общественных, административных и бытовых зданиях.

Зачем нужно заземление

Заземление в частных домах нужно, чтобы обезопасить жильцов от поражения электричеством. Через розетки заземляют все электроприборы: чайники, электроплиты, стиральные машины.

Бойлеры также заземляют через розетки, а еще отдельным проводом делают заземление на корпус — на случай, если бак потечет. В большинство бойлеров встроено устройство защитного отключения — УЗО, которое отключит нагреватель при утечке тока. Заземление в этом случае отведет остатки напряжения.

В бане заземление особенно необходимо, так как вода — хороший проводник тока. Иногда при монтаже проводки в бане хозяева применяют не специальный, а обычный электрический кабель, его изоляция плавится от высоких температур. Оголившийся кабель может передать напряжение на разлившуюся воду или, например, через воду на металлическую печь.

Еще кабель могут проложить под фольгированной теплоизоляцией, которая станет проводником для тока. А бывает, в бане делают теплый пол, и из-за неисправности изоляции людей начинает бить током везде, где разлита вода.

Схемы заземления

Системы заземления различаются по типам и способам подключения нулевого проводника.

Нулевые проводники бывают трех типов:

  1. N — функциональный ноль.
  2. PE (Protective earth) — защитный ноль, или заземление.
  3. PEN — совмещение функционального и защитного нулевых проводников.

Если от опоры на улице в дом идут два провода, то один из них — это L, фаза, а второй — PEN, защитный и рабочий ноль. Фазный провод обычно белого цвета, нулевой — синего. В трехфазной сети будет четыре провода: три фазы и PEN-проводник .

Если проводов от опоры к дому три в однофазной или пять в трехфазной сети, то защитных проводников два: N — функциональный, или рабочий, ноль (провод синего цвета) и PE — защитный ноль, провод желто-зеленого цвета.

Вводной СИП-кабель с четырьмя жилами: три фазы и ноль. Источник: магазин «ПЭК-24»

Система TN-C. Рабочий ноль N и PE-проводник в этой системе совмещены в один провод. Рабочий ноль N подключен к контуру заземления рядом с трансформаторной подстанцией.

При TN-C в банях и влажных помещениях дома электроприборы нужно заземлять отдельно. То есть, например, ставить розетку с заземляющим контактом для стиральной машины и от этой розетки прокладывать отдельный провод на вкопанный в грунт контур заземления.

❗️ Схему TN-C считают небезопасной и почти не используют.

Система TN-C-S. На пути от трансформаторной подстанции до ввода в здание нулевой рабочий N и защитный проводник PE совмещены. На вводе в здание PEN разделяется на отдельный нулевой N и защитный проводник PE. В щитке шина заземления и нулевая шина объединяются перемычкой.

Главный недостаток системы в том, что она не защищена от обрыва или отгорания нуля на пути от подстанции к вводу в дом. Это особенно опасно на старых сетях, когда по столбам идет не один СИП-кабель , где все жилы перекручены, а несколько отдельных проводов.

Если, например, дерево упадет на нулевой провод и оборвет его, на заземляющей шине PE в доме появится напряжение. Все заземленные металлические корпуса приборов окажутся под напряжением. Например, корпус бойлера в котельной или металлической печи в бане. То же самое случится, если на улице перехлестнутся нулевой и фазный провода. Ноль на подстанции отгорит, а на контуре заземления появится ток.

Система TN-C-S — основная для любых зданий. Она считается самой надежной.

Старая электрическая сеть: по опорам идет несколько проводов, закрепленных на фарфоровые изоляторы. Упавшее дерево можно оборвать любой провод или несколько. Источник: Poliorketes/Shutterstock Современная сеть: между опорами идет один провод. Если на него упадет дерево, оборвет все: и фазу, и ноль. Это безопаснее. Источник: Valery Shanin / Shutterstock

Система TN-S. Это модификация системы TN-C-S . В ней рабочий N и защитный PE ноль разделили еще на подстанции. В трехфазной сети на всем участке линии пять проводов, к дому подходит тоже пять: три фазы, ноль и земля.

Читать статью  Рабочее заземление

Система TT. Это, возможно, самая популярная система для заземления частных домов. В дом при трехфазном вводе приходит четыре провода: три фазы и рабочий ноль. В самом доме устраивают независимую от подстанции систему заземления: в грунт забивают штыри, провод от них выводят на шину заземления в щитке. С ней соединяют корпуса приборов. Таким образом, при применении системы ТТ заземление дома и подстанции никак не соединено.

При организации схемы ТТ обязательно используют устройства защитного отключения — УЗО. Ставят вводное УЗО с уставкой — пороговым значением силы тока, при котором УЗО срабатывает, — 100—300 мА. Это так называемое противопожарное УЗО, которое защищает от утечки тока. На линии электроприборов ставят УЗО на 10—30 мА. УЗО обязательно совмещают с автоматическими выключателями, которые защищают линию от короткого замыкания и перегрева.

Устройство контура заземления

При коротком замыкании или утечке тока напряжение уходит с электроприбора в контур заземления. Контур — это, как правило, металлический треугольник, который закапывают в грунт рядом с домом. Контур заземления нужно делать только при системе TT.

Элементы контура заземления

Вот из чего состоит система заземления частного дома:

  1. Вертикальные штыри-заземлители .
  2. Металлические полосы или горизонтальные заземлители, которые соединяют штыри-заземлители .
  3. Заземляющий проводник — линия от контура заземления до электрощитка.

Контур заземления нельзя делать из подручных конструкций, например проходящих в земле металлических водопроводных труб. Это небезопасно, а еще такие трубы быстрее ржавеют и разрушаются.

Заземляющий электрод. В качестве электродов обычно берут металлический прут диаметром не менее 18 мм или металлические уголки 50 × 50 мм. Уголки заостряют на концах, чтобы их удобнее было забивать в грунт. Типовая длина прута или уголков — три метра. Этого достаточно для большинства грунтов.

Наилучшие показатели сопротивления у электродов из меди. Электроды из обычной арматуры, наоборот, неэффективны в контуре заземления. Для обвязки электродов используют стальные полосы.

Наименьшие размеры заземлителей и заземляющих проводников, проложенных в земле

Материал Профиль сечения Диаметр, мм Площадь поперечного сечения, мм Толщина стенки, мм
Черная сталь Круглый для вертикальных заземлителей 16
Круглый для горизонтальных заземлителей 10
Прямоугольный 100 4
Угловой 100 4
Трубный 32 3,5
Оцинкованная сталь Круглый для вертикальных заземлителей 12
Круглый для горизонтальных заземлителей 10
Прямоугольный 75 3
Трубный 25 2
Медь Круглый 12
Прямоугольный 50 2
Трубный 20 2
Канат многопроволочный 1,8 (диаметр каждой проволоки) 35

Черная сталь
Профиль сечения
Круглый для вертикальных заземлителей
Диаметр, мм
Площадь поперечного сечения, мм
Толщина стенки, мм
Профиль сечения
Круглый для горизонтальных заземлителей
Диаметр, мм
Площадь поперечного сечения, мм
Толщина стенки, мм
Профиль сечения
Прямоугольный
Диаметр, мм
Площадь поперечного сечения, мм
Толщина стенки, мм
Профиль сечения
Диаметр, мм
Площадь поперечного сечения, мм
Толщина стенки, мм
Профиль сечения
Диаметр, мм
Площадь поперечного сечения, мм
Толщина стенки, мм
Оцинкованная сталь
Профиль сечения
Круглый для вертикальных заземлителей
Диаметр, мм
Площадь поперечного сечения, мм
Толщина стенки, мм
Профиль сечения
Круглый для горизонтальных заземлителей
Диаметр, мм
Площадь поперечного сечения, мм
Толщина стенки, мм
Профиль сечения
Прямоугольный
Диаметр, мм
Площадь поперечного сечения, мм
Толщина стенки, мм
Профиль сечения
Диаметр, мм
Площадь поперечного сечения, мм
Толщина стенки, мм
Медь
Профиль сечения
Диаметр, мм
Площадь поперечного сечения, мм
Толщина стенки, мм
Профиль сечения
Прямоугольный
Диаметр, мм
Площадь поперечного сечения, мм
Толщина стенки, мм
Профиль сечения
Диаметр, мм
Площадь поперечного сечения, мм
Толщина стенки, мм
Профиль сечения
Канат многопроволочный
Диаметр, мм
1,8 (диаметр каждой проволоки)
Площадь поперечного сечения, мм
Толщина стенки, мм

Защита заземления. Штыри контура заземления должны плотно входить в грунт и соприкасаться с ним на максимальной площади. Поэтому элементы заземления запрещено красить.

Чтобы предотвратить образование ржавчины на стальных полосах, используют антикоррозионные составы. Сварные соединения контура обрабатывают битумной мастикой или смолой.

Как грамотно потратить и сэкономить
Рассказываем в нашей рассылке дважды в неделю. Подпишитесь, чтобы совладать с бюджетом

Виды контуров заземления

Геометрия контура заземления зависит в основном от удобства монтажа. Это может быть треугольник, квадрат, любая другая геометрическая фигура или забитые в линию стержни.

Треугольник. Это самый распространенный вариант контура заземления. В землю забиваются три стержня. В идеале расстояние между ними должно быть не меньше трех метров, но в зависимости от места на участке делают и меньше. Должен получиться равносторонний треугольник.

Линейный контур. Контур заземления в виде линии применяют там, где нет места для треугольника. Линейный контур удобно закопать вдоль забора или стены дома. Количество электродов может быть любым: чем больше, тем лучше показатели сопротивления контура.

Контур заземления, закопанный в грунт

Расчет заземления

Чтобы контур заземления правильно работал, перед его монтажом нужно сделать расчет. Неверно рассчитанный контур будет плохо отводить ток или вообще не будет выполнять свою функцию — получится, что все элементы заземления сделаны, но ничего не работает.

Общее сопротивление контура заземления в жилых зданиях не должно превышать 4 Ом. Чем ниже сопротивление, тем меньше напряжение, которое возникнет на корпусе электроприборов при каких-либо проблемах.

Еще нужно учитывать ключевой параметр для находящегося в земле контура заземления — сопротивление растеканию тока. Это то, насколько эффективно контур рассеивает ток в землю. На сопротивление растеканию влияет множество параметров: сопротивление грунта, количество стержней и расстояние между ними, материал стержней и даже время года.

Сопротивление грунта. Чем ниже сопротивление грунта, тем лучше заземлитель будет отводить ток. Например, в торфянике сопротивление минимально: напряжение уйдет в землю, даже если контур не сильно заглублен или не выдержаны рекомендуемые расстояния между электродами.

Гравий или шлак обладают большим сопротивлением: забитый в них контур может вовсе не работать.

Сопротивления грунтов

Тип грунта Примерное сопротивление, Ом·м
ПГС, влажный песок 300—500
Смесь глины и песка 100—150
Чернозем 50—60
Глина 50—60
Садовая земля 30—40
Суглинок с золой и пеплом 30—40
Торф 20—30

Тип грунта
Примерное сопротивление, Ом·м
ПГС, влажный песок
Смесь глины и песка
Садовая земля
Суглинок с золой и пеплом

Если грунт «жесткий», применяют ряд мер, чтобы заземлитель работал:

  1. Разбавляют почву. Контур заземления закапывают не тем же грунтом, а смесью золы и пепла. Иногда рекомендуют использовать раствор поваренной соли, но так делать не стоит: соль провоцирует коррозию.
  2. Забивают штыри электродов поглубже, чтобы достичь почвы другого состава. Например, берут 6 электродов по 1,5 метра, которые друг за другом забивают в одну точку. По мере продвижения вглубь их приваривают или соединяют муфтами, если электроды сделаны на заводе.

Размеры и расстояния для заземляющих электродов. Чтобы рассчитать расстояние между стержнями электродов, берут длину стержня и умножают на коэффициент 2,2. Например, при длине стержня в три метра расстояние между ними должно быть: 2,2 × 3 = 6,6 м. На практике такие расстояние не всегда удается выдержать из-за нехватки места на участке. Электроды, забитые на меньшее расстояние, также будут работать. Но ухудшится эффективность контура заземления, уменьшится сопротивление растеканию.

Снизить сопротивление контура можно установкой дополнительных электродов. Однако монтировать их вблизи от существующих бесполезно. Ток будет стекать с двух электродов на один и тот же участок. Поэтому заземлители нужно разносить: например, изменить геометрию контура и сделать вместо треугольника квадрат или линию с пятью электродами.

Правила и требования к контуру заземления

Глубина забивания штырей. Штыри-заземлители должны уходить в грунт ниже глубины промерзания как минимум на 60—100 см.

Например, в Архангельске грунт промерзает зимой на 1,8 м. Штыри нужно забивать минимум на 2,8 м. Глубина также зависит от типа грунта: чем его сопротивление хуже, тем глубже должны быть штыри.

Карта глубины промерзания грунтов. Источник: «Калк-про»

Заземление и молниезащита. Если в доме сделана молниезащита, ее желательно объединить с внутренней системой заземления. По нормам эти системы должны быть общими.

п. 3.2.3.1 инструкции по устройству молниезащитыPDF, 936 КБ

Если молниезащиту и внутреннее заземление дома объединяют, в грунте делают один контур, а не два. По сути, это две отдельные системы. Молниеотвод работает как заземлитель для внешнего сверхмощного напряжения — удара молнии. Молниеотвод собирают из толстых прутков, которые не сгорят, если по ним пропускать ток в несколько тысяч ампер. Заземление в доме работает только с бытовым напряжением, для него используют провод того же сечения, что идет в розетки.

На вводе в щиток ставят устройство защиты от импульсных перенапряжений — УЗИП. Оно гарантирует, что импульс молнии от молниеотвода через объединенный контур не пройдет в дом.

Хорошие УЗИП для стандартного в частном доме трехфазного ввода стоят не менее 9000 Р .

Цены на УЗИП — устройства защиты от импульсных перенапряжений

УЗИП часто ставят и при раздельных контурах заземлений. В том числе если нет молниеотвода. Так делают, чтобы спасти проводку, в случае если молния попадет в уличные провода или в землю рядом с домом.

При объединении обе системы заземления включают в систему уравнивания потенциалов — СУП. В такой системе все металлические части конструкций дома и все металлические коммуникации подводят проводами к главной шине заземления. То есть тянут отдельный провод заземления, например, от ванной. Еще один провод — от газовой трубы, еще один — от металлического короба вентиляции и так далее.

Если СУП нет, при ударе молнии возникнет разница потенциалов и пробой между элементами молниезащиты и металлическими конструкциями. Например, молния ударит в трос-молниеприемник на крыше, а на чердаке — кабель освещения под напряжением. Если нет СУП, из-за разницы потенциалов между тросом и кабелем начнет искрить, несмотря на то, что их разделяет крыша. Может начаться пожар.

При устройстве СУП к главной заземляющей шине рекомендуют подводить:

  1. Металлические трубы коммуникаций здания: горячего и холодного водоснабжения, канализации, отопления, газоснабжения.
  2. Металлические части каркаса здания.
  3. Металлические части централизованных систем вентиляции и кондиционирования.
  4. Молниезащиту.
  5. Металлические оболочки телекоммуникационных кабелей.

Сечение провода для уравнивания потенциалов не должно быть меньше сечения жилы вводного провода.

Как сделать монтаж контура заземления

Выбор места. Контур заземления делают недалеко от дома: как правило, не дальше двух метров. Это позволит сэкономить на длине проводника, соединяющего контур со щитком. Лучше выбирать влажное место: рядом с прудом, в низине или у огорода. Влага даст лучший контакт штырей с грунтом. Если дом стоит на сваях или ленточном фундаменте, допускается делать контур прямо под домом.

Еще смотрят на тип грунта. Бывает, при строительстве делали выборку, привезли много песка и около дома песчаная почва. А чуть дальше — глина или чернозем. В таком случае контур делают на большем расстоянии от дома в более подходящей почве.

Земляные работы. Последовательность земляных работ:

  1. Выкопать траншею в виде треугольника, линии или другой конфигурации. Это делают мини-экскаватором или обычной лопатой.
  2. Подготовить штыри. Нижний край штырей заострить — спилить угол болгаркой. Если предстоит забивать кувалдой, приварить платформу к верхней точке штыря. По ней будет удобно бить.
  3. Забить заземлители до необходимой глубины. Это удобнее и быстрее, чем копать лопатой или использовать мощный перфоратор со специальной насадкой. Штыри должны торчать из земли не менее чем на 20 см, чтобы потом можно было приварить металлические полосы.

Нельзя готовить «колодцы» для заземлителей при помощи мотобура или других инструментов. Штыри должны заходить в грунт плотно и без зазоров, только так контур будет нормально работать.

Монтаж конструкции. Последовательность действий при монтаже:

  1. Обварить заземлители металлической полосой, еще одну полосу подвести к вводу в дом. В каком месте она будет присоединена к контуру, не имеет значения: обычно полосу приваривают в ближайшей к дому точке. Сварные швы должны быть аккуратными.
  2. Обработать сварные швы антикоррозионным составом, грунтовкой, битумной мастикой или смолой.
  3. Засыпать траншею грунтом или смесью суглинка, золы и пепла.

Ввод в дом. Полосу от контура нужно вывести на цоколь здания и закрепить на ней болт 10 мм. С его помощью соединить полосу с заземляющим проводником — кабелем желто-зеленого цвета. Кабель должен быть проложен в щиток к главной шине заземления.

Норматив сечения заземляющего проводника зависит от сечения фазного провода. Рекомендую медный провод сечением 6 мм.

Ввод стальной полосы контура заземления в дом на этапе его строительства

Проверка и контроль. Согласно нормам, каждые 12 лет нужно проверять сопротивление контура заземления. Это нужно делать, так как части контура находятся в земле и могут сгнить или прийти в негодность. Кроме того, не исключены механические повреждения: например, из-за подвижности грунта могут переломиться сварные соединения.

Проверять сопротивление контура заземления лучше летом или зимой, когда грунт имеет наибольшее сопротивление.

Проверка контура в идеале проводится электролабораторией. Эта услуга стоит от 3000 Р . Чем дальше дом от офиса электротехнической компании, тем будет дороже. Электролаборатории работают в основном на предприятиях, и может случиться, что фирма откажется ехать на частный заказ или надолго отложит выезд. Измерение занимает не более 30 минут. Хозяину дома выдают протокол, где указано сопротивление контура заземления в омах.

Передвижная электролаборатория. Источник: Oekspb / «Википедия» Так выглядит отчет электролаборатории. Источник: «Лаборатория энергоэффективных решений»

Проверить контур заземления можно самостоятельно, если удастся достать советские измерители сопротивления МС-08 или М-416 .

Работа приборов основана на пропускании тока через пробные электроды. Это металлические колышки, которые временно втыкаются в грунт на расстоянии 20—30 м от контура. Колышки-электроды вместе с контуром образуют треугольник. При подаче напряжения прибор определит сопротивление контура.

Измеритель сопротивления М-416

Что лучше — купить готовый комплект заземления или сделать самостоятельно

Можно купить готовый комплект заземления. Его преимущество — быстрота установки. В большинстве случаев ничего не нужно будет варить, все соединения делаются при помощи заводского крепежа.

Еще считается, что заводские электроды более надежны, меньше гниют в земле, так как покрыты спецсоставами в промышленных условиях, — заводы применяют гальваническое омеднение.

Стоимость готовых комплектов. Заводские модульные комплекты заземления для частного дома стоят от 7000 Р . Хороший комплект с шестиметровыми медными электродами обойдется примерно в 10 000 Р .

Цены на модульные комплекты заземления Стандартный комплект заземления для частного дома фирмы Zandz

Если делать все самостоятельно, получится сэкономить.

Заземление своими руками

Материал Стоимость
Уголок стальной 50 × 50 × 5 мм, 6 м, 3 шт. 1782 Р
Полоса металлическая, 40 × 4 см, 12 м 936 Р
Провод ПуГВ 10 К, 10 м 710 Р
Итого 3428 Р

Сварочное оборудование и его эксплуатация

Металлобаза

Стационарное сварочное оборудование, вне зависимости от схемы подключения к электрической сети, в большинстве случаев имеет отдельный заземляющий контур. Обычно, один конец заземляющего кабеля, крепится к металлическому корпусу сварочного аппарата, а другой – к вкопанному в землю металлическому стержню.

Благодаря такому соединению корпуса сварки с поверхностью земли, возникает равенство потенциалов между ними. Если корпус окажется под напряжением, и рабочий к нему прикоснется, то из-за равенства потенциалов удара током не произойдет. Это относится и к другим частям аппарата, способным проводить ток. Поскольку электросварочное оборудование работает с большими по величине токами, заземление может спасти жизнь.

Электробезопасность при сварочных работах

При сварочных работах электробезопасность обеспечивается выполнением требований должностных инструкций для сварщиков, инструкций по эксплуатации сварочного оборудования, требований соответствующих разделов правил устройства электроустановок, правил технической эксплуатации электроустановок потребителей, межотраслевых правил по охране труда при газопламенной обработке металлов.

Читайте также: Автоматическая линия на базе вибропресса ГЕВИТ-БЛОК 2.6

Рассмотрим основные требования правил, от выполнения которых зависит электробезопасность сварщика и людей, находящихся в зоне влияния сварочной установки.

К сварочным работам должны допускаться сварщики, прошедшие специальную подготовку, имеющие удостоверение на право производства сварочных работ и удостоверение на группу по электробезопасности не ниже II.

Основной защитой от напряжения опасной величины, появляющегося на корпусах источников сварочного тока, является заземление (зануление) этих корпусов. Большинство электроприемников, в том числе и сварочные установки, получают электроэнергию от сетей 220/380 В с заземленной нейтралью трансформатора или генератора, и к этой нейтрали присоединяется четвертый провод сети, называемый нулевым, который присоединен к металлическим корпусам распределительных устройств и электрических аппаратов. К этому проводу нужно также присоединять корпуса источников сварочного тока. Для этого на корпусе источника сварочного тока должен быть специальный болт, к которому присоединяется четвертая жила кабеля, называемая нулевой. На другом конце кабеля, присоединяемом к сети, эта жила соединяется с корпусом выключателя, силовой сборки и т. п.

Выключателем может быть рубильник, автоматический выключатель и другие электрические аппараты.

В двухпроводной сети 220 В защита от опасного напряжения осуществляется также присоединением источника сварочного тока к нулевому проводу сети, который в этом случае является и рабочим, так как проводов только два.

На отдельных участках сети могут быть нулевые рабочие и нулевые защитные проводники. В таких случаях нулевой защитный проводник нужно присоединять к металлическому корпусу источника сварочного тока, а нулевой рабочий проводник — к цепи питания источника сварочного тока.

Источники сварочного тока могут присоединяться к силовым сетям напряжением не более 660 В.

Для подвода тока к сварочной дуге должен применяться специальный сварочный гибкий провод (кабель) с резиновой изоляцией и в резиновой оболочке, сечение которого должно соответствовать максимальному сварочному току.

Запрещается применение проводов в изоляции или в оболочке из полимерных материалов, распространяющих горение.

Присоединение источника сварочного тока к сети должно осуществляться через отключающий и защитный электрические аппараты. Эти аппараты могут быть объединены в одном, содержащем защиту от тока короткого замыкания. Длина гибкого кабеля, соединяющего переносной (передвижной) источник сварочного тока с включающим аппаратом сети, должна быть не более 15 м. Передвижные сварочные установки на время их передвижения должны быть отсоединены от сети.

Электросварочные установки с источниками постоянного или переменного сварочного тока, предназначенные для сварки в особо опасных условиях (внутри металлических емкостей, в колодцах, туннелях, в котлах, отсеках судов и т. п.) или для работы в помещениях с повышенной опасностью и особо опасных, должны иметь устройства автоматического отключения напряжения холостого хода при разрыве сварочной цепи или его ограничения до безопасного в данных условиях значения.

При сварочных работах в данных условиях сварщик должен пользоваться кроме спецодежды диэлектрическими перчатками, резиновыми галошами и ковриками. При работе в замкнутых или труднодоступных пространствах необходимо одевать защитные каски из полиэтилена, текстолита или винипласта; при этом запрещается пользоваться металлическими щитками. Работы в таких условиях сварщик должен выполнять под контролем двух наблюдающих, один из которых должен иметь группу II по электробезопасности. Наблюдающие должны находиться снаружи и контролировать безопасное проведение работ сварщиком. На сварщике должен быть предохранительный пояс с канатом, конец которого должен находиться у наблюдающего. При этом сварочная установка должна иметь устройство для ограничения напряжения холостого хода или его отключения.

Запрещается производить сварочные работы на закрытых сосудах, находящихся под давлением (трубопроводы, котлы, баллоны и т. п.), и сосудах, содержащих воспламеняющиеся или взрывоопасные вещества. Также запрещается электросварка и резка бочек, баков, цистерн, резервуаров и других емкостей из-под горючих и легковоспламеняющихся жидкостей и газов без предварительной тщательной очистки, пропаривания этих емкостей и удаления из них газов вентилированием.

При проведении сварочных работ в закрытом помещении должен быть предусмотрен отсос сварочных аэрозолей непосредственно вблизи сварочной дуги. Должны быть установлены фильтры в вентиляционных устройствах помещений для электросварочных работ, исключающие выброс вредных веществ в окружающую среду.

Читайте также: Особенности использования автоматики для дренажных насосов

Присоединение к сети и отсоединение от сети источников сварочного тока и наблюдение за их исправным состоянием при эксплуатации должен выполнять электротехнический персонал предприятия, где числится данная сварочная установка, с группой по электробезопасности не ниже III, а также электросварщик, если он прошел обучение и сдал экзамен на получение удостоверения на группу III по электробезопасности.

Измерение сопротивления изоляции электросварочных установок производится после длительного перерыва в их работе, после перестановки оборудования, но не реже 1 раза в 6 месяцев.

Ответственность за эксплуатацию сварочного оборудования, выполнение графика технического обслуживания и ремонта, безопасное ведение сварочных работ определяется должностными инструкциями и утверждается руководителем предприятия.

При наличии на предприятии должности главного сварщика или главного механика данная ответственность возлагается на них. Электросварочное оборудование закрепляется за электросварщиком под роспись.

Основные требования

Заземление делают медным кабелем сечением минимум 6 мм или металлической арматурой сечением минимум 12 мм. Крепят медный кабель к корпусу через специальный болт на установке, помеченный надписью «Земля» (возможно и другое обозначение). Кроме основного электросварочного оборудования, в аппаратах для дуговой сварки необходимо заземлять и тот зажим вторичной обмотки, к какому подключается проводник, идущий к свариваемой детали.

Если кабель, подводящий ток, двужильный, то для заземления сварочного трансформатора нельзя применять провода «ноль» и «фаза».

Основные требования по обеспечению электробезопасности:

  • все нетоковедущие элементы сварочных установок должны быть подключены к заземляющему контуру;
  • сварочные аппараты, для подключения к заземляющему контуру, оснащаются специальным болтом с соответствующим обозначением, к которому прикреплен заземляющий провод;
  • для каждой электрической установки должна быть предусмотрена отдельная точка заземления;
  • запрещается сварочные аппараты заземлять последовательно;
  • если нет никакой возможности заземлить оборудование, необходимо использовать устройство защитного отключения.

Для эффективной защиты от поражения током, по нормам электробезопасности, сопротивления заземляющего контура не должно превышать 5 Ом. Для того чтобы добиться заданных параметров необходимо обеспечить максимально большую площадь контакта заземлителя с землей, а так же хорошую токопроводимость.
Для соединения заземлителя с заземляющим проводником используется метод сварки или применяются хомуты. Независимо от метода соединения, стык необходимо защитить от возможной коррозии, для этого, чаще всего, применяется смола.

Электрические сварочные аппараты, для обеспечения безопасной работы, необходимо каждый месяц проверять на наличие оголенных токоведущих элементов, замыкания на корпус, целостность заземляющего контура.

Проверяется наличие замыкания между элементами обмотки трансформатора, а также исправность систем защиты.

Читать статью  2. Заземление молниеотводов

В электросварочных аппаратах, в которых создается дуга между электродом и проводящей электричество деталью, необходимо кроме элементов корпуса, заземлять вывод вторичной обмотки источника напряжения, соединяемый обратным кабелем с деталью.

Основные требования к заземлению сварочного оборудования

Заземление сварочного аппарата, представляющего собой стационарную установку, выполняется с целью обеспечения его безопасной эксплуатации. Основные требования к заземлению в следующем:

  1. Заземляются все нетоковедущие части электросварочных установок и один вторичный вывод.
  2. Сварочное оборудование должно быть оснащено специальным контактом в (виде болта или шпильки), предназначенным для присоединения заземления.
  3. Заземляющий болт должен быть с контактной площадкой, обозначенной специальным знаком заземления.
  4. Последовательное заземление нескольких установок запрещается: для каждого должна быть предусмотрена отдельная точка подсоединения.

Переносные сварочные автоматические установки и полуавтоматы, подключаемые к сети переменного тока свыше 42 В (и более 110 В постоянного), также оснащаются заземляющими контактами. В том случае, когда заземление (зануление) для установки не может применяться или монтаж заземления затруднен, электрооборудование должно иметь УЗО (устройство защитного отключения).

Заземление может использоваться и для устройства молниезащиты.

Для объектов, запитываемых от понижающего трансформатора с глухозаземленной нейтралью и напряжением на вторичной обмотке 380/220 В, повторное заземление устраивается на вводе. При этом сопротивление заземляющего контура, согласно ПУЭ, не должно быть большим 10 Ом. Для того, чтобы обеспечить такие параметры, необходимо использовать заземлители с большой контактной площадью и хорошей проводимостью. Их поверхность должна быть очищена от масла и краски. Пригодны для этого:

  • трубопроводы из металла (кроме тех, что связаны с горючими жидкостями и газами);
  • металлические оболочки кабелей;
  • обсадные трубы;
  • элементы фундамента.

Схема монтажа контура заземления в таком случае должна предусматривать двойное присоединение их к заземляющей магистрали. Для присоединения заземлителей к заземляющим проводникам используется сварка. При этом сварочный шов должен быть вдвое шире прямоугольной формы проводника (в сечении) и в шесть раз – круглого. Если сварку использовать невозможно – применяются хомуты, которые так же, как и сварочные швы, защищают от коррозии слоем битума. Перед наложением хомутов поверхность естественного заземлителя в этом месте должна быть зачищена.

Читайте также: Сделать мангал своими руками из авто диска. Мангал из автомобильных штампованных дисков

Во взрывоопасных помещениях естественное заземление может использоваться только в качестве дополнительного. Основным должно быть заземление искусственное, выполненное в соответствии с ПУЭ.

Внутренний контур заземления крепится анкерными болтами непосредственно к стене. В местах их пересечения с кабелями или трубопроводами предусматривают защиту из труб. В помещениях с высоким уровнем сырости и кислотности внутренний контур заземления крепят на опорах на расстоянии 100 мм от стен.

Классификация заземлителей

Искусственный контур заземления сварочного оборудования может быть выполнен вертикальным способом и горизонтальным.

При выполнении вертикального заземляющего контура, чаще всего, используют металлические уголки, трубы или пластины, закопанные в землю. Запрещается для контура заземления использовать алюминий, так как в следствии электрокоррозии он быстро разрушается.

В местах, где по тем или иным причинам невозможен монтаж вертикального заземления, применяется горизонтальное (глубинное) заземление. В грунт, на необходимую глубину, помещают один или несколько металлических стержней, концы которых соединяют между собой.

Главным преимуществом вертикального заземления является экономия пространства. Но это не единственное достоинство данного способа заземления – за счет контакта со слоями земли, которые насыщены влагой, достигается отличная токопроводимость.

Влияние почвы на сопротивление Rз

Практически доказано, что сопротивление заземляющего устройства в значительной степени определяется состоянием грунта в месте расположения заземлителя. В свою очередь, характеристики почвы в зоне проведения защитных работ зависят от следующих факторов:

  • Влажность почвы на участке проведения работ;

Дополнительная информация. При оценке влажности следует знать, что сланцы и глина хорошо удерживают воду, а песчаные почвы, напротив, плохо.

  • Наличие в почве каменистых составляющих, в которых обустроить заземление попросту невозможно (в этом случае приходится выбирать другое место);
  • Возможность искусственного увлажнения грунта в особо засушливые летние периоды;
  • Химический состав почвы (наличие в ней солевых составляющих).

В зависимости от состава грунта, он может быть отнесён к тому или иному виду (смотрите фото ниже).

Исходя из особенностей формирования сопротивления заземлителя, предполагающих его снижение при увлажнении и повышении солевой концентрации, в случае крайней необходимости в грунт искусственно вводятся порции влажного химиката NaCl.

Хорошие грунты с точки зрения обустройства заземления – это суглинистые почвы с высоким содержанием торфяных составляющих и солей.

Типы клемм сварочных аппаратов

Правильно подобранные клеммы заземления помогут обезопасить сварщика от поражения электрическим током, и обеспечить высокое качество шва. Клеммы заземления необходимо выбирать исходя из максимального тока и веса кабеля, подсоединенного к зажиму. Учитывается надежность контакта клемм с рабочей поверхностью свариваемой детали (ее обеспечивает жесткость пружины). Угол раскрытия зажима должен создавать надежное соединение с деталями любых габаритов.

Клеммы заземления делятся на три основных вида:

  • зажим типа «Крокодил»;
  • магнитный зажим;
  • струбцина.

Вопросы, затрагиваемые в ПУЭ

Регламентирование порядка эксплуатации различных видов защитных систем может быть представлено в виде определённого набора требований, касающихся обустройства отдельных конструкций.

Согласно им, функциональная готовность контуров заземления, в состав которых входит целый набор конструктивных элементов, должна подтверждаться следующими техническими данными:

  • Описание конструкции и состава защитных устройств, применяемых в действующих электроустановках;
  • Формулы для расчета их размеров, а также нормы сопротивления заземляющих устройств (ЗУ);
  • Таблицы с корректировочными коэффициентами, позволяющими вводить поправки на качество и состояние грунта в месте размещения контура (с учётом материала отдельных элементов);
  • Порядок организации и проведения контрольных испытаний, имеющихся у систем заземления.

На заметку. Наличие документально подтверждённых данных о рабочих характеристиках и надёжности функционирования контура заземления частного дома, например, позволит исключить вероятность поражения электрическим током животных и жильцов.

При его обустройстве предписывается действовать в строгом соответствии с ПУЭ, а также соблюдать все требования, касающиеся эксплуатации данного защитного устройства.

Правила безопасности при работе со сварочным инвертором

При выполнении сварочных работ, используя инвертор, замыкание фазы на корпус может стать причиной несчастного случая. Кроме этого, в бюджетных инверторах китайского производства нередко случаются пробои силового трансформатора. Вследствие подобной неполадки держатель электрода и клемма массы становятся токопроводящими, и несут опасность. Заземление могло бы обезопасить сварщика от поражения током, но его применение зачастую невозможно при использовании переносного оборудование для сварки. Потому, при использовании инвертора, необходимо наряду с заземлением использовать УЗО.

Разновидности сварочного оборудования.

Отметим, что все оборудование для сварки разделяется по способу применения – одни аппараты предназначены для бытового использования непрофессиональными сварщиками, с другими могут работать исключительно специалисты в области сварки. Главное отличие бытовых и профессиональных устройств состоит в том, что первые более просты в управлении, а также имеют, в отличие от профессиональных, меньшие габариты и работают на меньшем напряжении.

Собственно сварочные аппараты также различаются: одни предназначены для дуговой сварки, другие для проведение газосварочных работ и пр. Разными они могут быть и по степени механизации процесса – полуавтоматические, автоматические аппараты.

Читайте также: Как делать керамическую посуду своими руками

Все сварочное оборудование условно подразделяют на два класса, а именно:

  • Собственно, сварочное оборудование – аппараты и инструменты, которые используются непосредственно для сваривания металлов. К этому классу относят – инверторы, держатели электродов, газовые горелки, различные клапаны и газосмесители, пр.
  • Защитное оборудование – все инструменты, спецодежда и устройства, предназначенные для защиты сварщика во время процесса сварки.

Правила заземления сварочного оборудования

Каждая стационарная установка для сварки имеет, как правило, отдельный заземляющий контур. Один кабель для заземления прикрепляется к металлическому основанию аппарата, а другой — к вкопанному в землю стержню из металла.

Подобное соединение оборудования с землей обеспечивает равенство потенциалов между ними. Если корпус окажется под воздействием напряжения, случайное прикосновение человека не приведет к удару электрическим током. То же самое касается и других узлов аппарата, через которые проходит ток.

Что понадобится для того, чтобы провести заземление

Заземление делается с использованием металлических проводников, которые могли бы проводить ток в землю. Это могут быть металлические трубы, уголки, штыри и прочий металлопрокат. Допускается использовать для монтажа заземления и толстую арматуру.

Сварка заземления

Также понадобится металлическая полоса, толщиной в 4 мм, и шириной в 3-4 см. Полоса необходима будет для соединения заземлителей и прокладки заземляющей шины в дом. Для соединения заземлителей металлической полосой, рекомендуется использовать именно сварку. Если брать болты, то такое соединение будет ненадёжным и прослужит не более одного года. В результате коррозии ухудшиться контакт с заземлителями из-за чего заземление перестанет работать.

Основные требования

Для обеспечения заземления задействуют кабель из меди или арматуру из металла (диаметром не меньше 6 и 12 мм соответственно). Крепление медного кабеля к корпусу производят с помощью болта, расположенного на сварочном оборудовании. В большинстве случаев провод обозначается надписью «Земля», но возможно и другое название.

В устройстве, предназначенном для сварки посредством электрической дуги, необходимо заземлять не только основные элементы. При работе с такими аппаратами нужно обращать внимание и на зажим вторичной обмотки. К нему подключается проводник, ведущий к обрабатываемой детали.

Важно! Если ток проводится по двужильному кабелю, недопустимо применение в процессе заземления сварочного трансформатора проводов «ноль» и «фаза».

Классификация заземлителей

Строгое соответствие стандартным мерам безопасности предполагает заземление электрических контуров в обязательном порядке. Сделать это можно двумя способами:

Первый предусматривает использование труб, уголков или пластин, изготовленных из металла. Эти элементы нужно вкопать в грунт. В результате существенным образом экономится пространство. Преимуществом этого способа выступает отличная проводимость электрического тока, поскольку металлические детали вступают в непосредственный контакт с влажными земельными слоями.

Вертикальное заземление может применяться не во всех случаях. Там, где это по каким-то причинам невозможно, используют горизонтальный способ или глубинный. Особенность его состоит в закапывании в землю на определенную глубину металлических стержней, соединенных между собой.

Важно! В процессе создания контура заземления запрещено использовать алюминиевые детали, поскольку они отличаются слабой устойчивостью к электрокоррозии (самопроизвольному разрушению материалов в результате воздействия блуждающих токов).

Разновидности заземлителей

При отсутствии естественных заземлителей выполняется монтаж наружного контура заземления, к которому присоединяют соответствующие выводы и клеммы электрооборудования.

Искусственное заземление может быть реализовано с вертикальных или горизонтальных заземлителей. Для вертикальных используют трубы из стали или уголки, которые соединяют друг с другом, в результате чего образуется контур. Соединяющие элементы являются горизонтальными заземлителями: применяется для этого металлические полосы толщиной не менее 4 мм или круглого сечения арматура диаметром от 10 мм.

Горизонтальные заземлители могут быть выполнены в виде металлических полос, заложенных на дно котлованов, подготовленных для строительства фундамента. Располагаются полосы таким образом, чтобы их наибольшая поверхность была ориентирована в сторону земли. Сечение полос – 30×4 мм, может использоваться круглая стальная арматура диаметром 12 мм.

Использовать алюминий для создания заглубленного заземления не разрешается, так как этот металл быстро разрушается в почве от электрокоррозии.

Там, где монтаж горизонтального заземления невозможен (например, из-за отсутствия земельного участка, свободного от асфальта и других коммуникаций), применяется технология глубинного заземления. При этом в одной точке в грунт различными способами вводятся металлические стержни: конец каждого следующего соединяется с предыдущим, образуя заземлитель с большой контактной площадью.

Клеммы аппаратуры для сварки

К подбору нажимов, предназначенных для крепления провода к источнику питания, следует относиться с особым вниманием. Правильный выбор способен не только сделать работу сварщика более безопасной, но и обеспечить хорошее качество шва.

Нужно учитывать как максимальное количество тока, так и массу кабеля, который соединен с зажимом. Необходимо обращать внимание и на то, насколько надежно клеммы соприкасаются с поверхностью обрабатываемой детали. Контакт зависит от коэффициента упругости пружин, которыми оснащены зажимы.

Существуют три основных типа клемм, применяемых при заземлении:

  • магнитная прищепка;
  • фиксатор «крокодил», получивший свое название из-за схожести с челюстями рептилии;
  • струбцина.

Наибольшее распространение нашли первые два вида. Магнит позволяет закрепиться на любой поверхности, например, на деталях необычной или закругленной формы — там, где существуют определенные сложности с фиксацией.

Использование зажима типа «крокодил» обеспечивает надежность крепления. Сам фиксатор отличается удобством в использовании. Срок его службы зависит от состояния пружины, которую не рекомендуется перегревать. Речь идет об одном из главных элементов клеммы: если выйдет он из строя, это негативным образом скажется на функционировании самого зажимного устройства.

Схема прокладки заземления

Вбивать заземлители в землю рекомендуется по форме треугольника. То есть, необходимо будет три куска трубы или уголка, которые нужно будет вбить в землю на расстоянии не менее одного метра друг от друга. Таким образом, будет обеспечена нормальная площадь заземления, что положительно скажется на его работе и сопротивлении (чем оно меньше, тем лучше).

Схема прокладки заземления

Однако схема заземления «треугольником» не единственная. Можно использовать гораздо больше заземлителей и сделать контур заземления в виде овала, квадрата или же прямоугольника. Треугольником делают заземление как минимально допустимое, чтобы захватить требуемую площадь земли. В случае с двумя заземлителями сделать это не получится.

Способы обеспечения электробезопасности

Крайне важно соблюдать меры, которые позволят уберечь рабочего от производственных травм. В процессе сварки следует придерживаться следующих правил:

  1. Подключить к контуру заземления все элементы, по которым не проводится ток.
  2. Оборудовать точку заземления для каждого аппарата.
  3. Заземлять каждое устройство последовательно недопустимо.
  4. При отсутствии возможности заземления применять устройство, позволяющее отключать электричество в автономном режиме.

Немаловажное значение имеет степень эффективности защиты работника от электротравм. Существуют определенные нормы безопасности, по которым показатель сопротивления заземляющего контура должен быть не выше 5 Ом. Необходимо их придерживаться путем обеспечения как можно большей площади контакта заземлителя с поверхностью земли. Следует позаботиться об удовлетворительной проводимости тока.

Заземлитель соединяется с проводником в основном с помощью сварки, в отдельных случаях крепится специальными хомутами. И в том, и в другом случае необходимо позаботиться о защите материалов от вредного воздействия окружающей среды. С этой целью место соединения нужно обработать, чтобы предотвратить коррозию — подходит, в частности, эпоксидная смола.

Контроль за состоянием сварочного аппарата

При проведении работ оборудование должно полностью соответствовать нормам безопасности. В период осмотров необходимо обращать внимание на следующие моменты:

  • исправность систем защиты и существования замыкания между элементами обмотки трансформатора;
  • состояние заземляющего контура, отсутствие оголенных деталей, по которым идет ток, или замыкание на корпус.

Важно! Сварочный аппарат нуждается в регулярных проверках.

Заземление сварочного аппарата

Тут, в общем-то, рассказывать особо не о чем. Как вы понимаете, заземлять и делать это очень надежно, следует любое электрооборудование, технику, приборы. А уж если речь идет о таком энергоемком и мощном аппарате, как сварочный трансформатор, то тут вопрос заземления становится крайне важным. Но заземление сварочного трансформатора осуществляется довольно просто. Внимательно осмотрите кожухи сварочного трансформатора. Чтобы не перепутать, поищите рядом с ними соответствующую надпись, она должна присутствовать.

Стандартные меры безопасности многих кодексов и норм требуют обязательного заземления электрических контуров. В этой статье мы расскажем об основных правилах заземления в типичных рабочих условиях. Заземление сварочного аппарата Сварочные аппараты с питанием через гибкие кабели или постоянное подключение к системе питания имеют отдельный провод заземления.

Рекомендуемая схема заземления

С помощью рисунка представлен порядок работы сварочного аппарата при питании его от сети переменного тока. На изображении показан последовательный порядок заземления. Можно увидеть, каким образом кабель соединяется с держателем электрода.

Указано, что вторичная обмотка контактирует с обрабатываемым материалом посредством специального зажима. При работе с передвижными установками используют переносное заземляющее оборудование.

Читайте также: Заклинил зажимной механизм патрона шуруповерта. Заклинил патрон шуруповерта что делать

Сварка металлов технологии сварочного производства

Защитное заземление представляет собой соединение металлическим проводом частей электрического устройства (например, корпуса сварочного трансформатора) с землей.

Заземление служит для защиты от поражения электрическим током при прикосновении к металлическим частям электрических устройств (корпуса источников питания, шкафы управления и др.), оказавшимися под напряжением в результате повреждения электрической изоляции.

Земля в аварийном режиме работы электрооборудования используется в качестве проводника в цепи замыкания. При правильном заземлении электрооборудования образуются параллельные электрические ветви: одна с малым сопротивлением (3 — 4 Ом), а другая, в которую входит человек или группа людей, с большим сопротивлением (2000 Ом). Поэтому практически ток не пройдет через тело человека в случае соприкосновения его с корпусом источника питания, случайно оказавшимся под напряжением.

Рис. 35. Схема подключения сварочного трансформатора при питании его от сети с глухозаземленной нейтралью:

1 — пункт подключения, 2 — сварочный трансформатор, 3 — электрододержатель, 4 — свариваемое изделие, 5 — вторичная обмотка трансформатора, 6 — первичная обмотка трансформатора, 7 — питающий шланговый трехжильный провод с заземляющей жилой, 8 — заземляющий болт на корпусе трансформатора и на пункте подключения, 9 — подключение к нулевому проводу сети

Включение в работу незаземленных источников питания дуги запрещается (однако имеются некоторые исключения).

Заземление выполняется различно в зависимости от напряжения и системы электроснабжения (с глухозаземленной нейтралью или с изолированной нейтралью).

Схема подключения сварочного трансформатора

На рис. 35 дана схема подключения сварочного трансформатора при питании его от сети с глухозаземленной нейтралью. Из схемы видно, что для питания однофазного сварочного трансформатора от пункта подключения до вводной коробки трансформатора приложен трехжильный гибкий шланговый кабель. Третья жила присоединена одним концом к заземляющему болту корпуса сварочного трансформатора и другим концом к корпусу пункта подключения. Зажим — вывод обмотки низкого напряжения сварочного трансформатора присоединен к свариваемой детали и одновременно заземляющим металлическим проводником к заземляющему болту на корпусе сварочного трансформатора. На передвижных установках применяют переносные заземляющие устройства.

Правила работы со сварочным инвертором

Игнорирование мер безопасности при сварке с помощью источника питания сварочной дуги представляет угрозу для жизни человека. Несчастный случай может произойти в момент замыкания фазы на корпус.

Определенную опасность таит в себе использование относительно дешевых инверторов: в такой аппаратуре часто повреждается силовой трансформатор, что становится причиной попадания напряжения на клемму массы и держатель электрода. В результате возникает угроза поражения сварщика током. Не всегда можно сделать заземление, поэтому в процессе использования инвертора рекомендуется использовать устройство защитного отключения.

Соблюдение всех перечисленных норм сделает сварочный процесс максимально безопасным. Пренебрежение правилами приведет к тяжким последствиям. Необходимо осуществлять постоянный контроль за состоянием электрокабелей и деталей аппарата, которые могут представлять опасность для жизни рабочего. Целесообразно применять средства индивидуальной защиты.

Особенность работ по заземлению

С учётом специфики сварочного оборудования разработаны конкретные схемы и правила заземления корпусов источников тока и трансформаторов. Они позволяют организовать цепи отвода опасных потенциалов от токопроводящих частей.

Специфика заземления сварочного оборудования проявляется в следующих требованиях:

  • последовательное заземление нескольких сварных агрегатов или постов недопустимо (каждая единица оборудования должна иметь своё собственное заземляющее устройство – ЗУ);
  • к устройству заземления должны подключаться все токоведущие части сварочного оборудования, включая вторичные выводы трансформаторного преобразователя;
  • временное крепление специального заземляющего проводника должно производиться с высокой степенью защиты от ослабления (на болтовой контакт, оснащённый специальной шпилькой);
  • место подключения заземляющей шины должно помечаться специальным символом, с понятным для оператора обозначением.

Правила заземления сварочных аппаратов

К устройствам данной категории относятся и сварочные аппараты. Учитывая их специфику, существуют определенные схемы и правила заземления. Смысл заземления в том, что искусственно организуется электрическая цепь, параллельная той, которая складывается установка — человек — опора при появлении напряжения там, где его по определению быть не должно. Это может вызываться наведенными токами от смежного источника с более высоким потенциалом , при пробое изоляции, механических повреждениях. По закону физики, ток пойдет по цепи с минимальным сопротивлением. Допустимое максимальное R в этом случае — 10 Ом.

Контроль состояния заземления

Согласно требованиям ПУЭ для эффективной защищённости от случайного электрического удара суммарное сопротивление заземляющего устройства не должно быть более 5 Ом.
Для достижения этого показателя при обустройстве заземления сварочного оборудования следует обеспечить требуемую электропроводность системы, увеличивая площадь контакта элементов с грунтом.

В реальных условиях достичь показателя в 5 Ом удаётся с большим трудом. Для обеспечения нормируемой величины переходного сопротивления используются искусственные приёмы его снижения (введением в прилежащий грунт специальных химикатов).

Независимо от способа обустройства заземляющей конструкции, все её открытые части (и в особенности – стыки) должны быть обработаны защитным составом. В качестве такого покрытия обычно используется разогретая до жидкого состояния смола.

И, наконец, с целью контроля исправности системы заземлителей в соответствии с требованиями нормативов должны проводиться регулярные проверки их текущего состояния.

В процессе таких проверок осуществляется визуальный осмотр открытых мест соединения частей ЗУ или делается контрольная выемка грунта на глубину, определяемую требованиями ПУЭ. В последнем случае проверяют состояние скрытых в земле шин и сварных соединений.

1.7.143

Места и способы присоединения заземляющих проводников к протяженным естественным заземлителям (например, к трубопроводам) должны быть выбраны такими, чтобы при разъединении заземлителей для ремонтных работ ожидаемые напряжения прикосновения и расчетные значения сопротивления заземляющего устройства не превышали безопасных значений.

Шунтирование водомеров, задвижек и т.п. следует выполнять лри помощи проводника соответствующего сечения в зависимости от того, используется ли он в качестве защитного проводника системы уравнивания потенциалов, нулевого защитного проводника или защитного заземляющего проводника.

Заземляющая клемма

Для надёжного механического соединения заземляющего устройства с обрабатываемой металлической заготовкой применяется специальная клемма заземления, выполняемая в виде прищепки типа «крокодил».
К этим приспособлениям, как и к элементам заземления другого типа, предъявляются особые требования, основные из которых такие:

  • заземляющая клемма должна отличаться высокими прочностными показателями и быть способной выдерживать не только повышенные механические нагрузки, но и значительные перепады температур;
  • она должна обеспечивать жёсткую фиксацию кабеля на свариваемых заготовках с высокой степенью надёжности;
  • использование специальных соединителей такого класса предполагает их совместимость с любыми сварочными аппаратами (включая подключение инвертора с токами до 300 Ампер).

В качестве образца этих контактных приспособлений могут рассматриваться сварочные клеммы заземления типа «КЗ-300», предназначенные для подключения оборудования с рабочими токами до 300 Ампер.

Эти изделия позволяют получить надёжное соединение со свариваемой деталью или устройством заземления, обладающее минимальным сопротивлением токам растекания.

Среди моделей, с которыми может использоваться такая клемма, производителями указываются сварочные агрегаты марки “СВАРИС”.

Благодаря всем перечисленным достоинствам таких изделий, получаемые с их помощью рабочие зажимы обеспечивают гарантированную безопасность и защищённость сварщика при работе с электрооборудованием.

Источник https://stroitelstvo-gid.ru/elektrika/pravila-zazemleniya-oborudovaniya-na-proizvodstve.html

Источник https://journal.tinkoff.ru/guide/zazemlis/

Источник https://math-nttt.ru/instrument/zazemlenie-svarochnogo-oborudovaniya-2.html

Понравилась статья? Поделиться с друзьями: