Измерение сопротивления изоляции: руководство!

Содержание

Сопротивление изоляции: методы измерения и нормы

Сопротивление изоляции – важнейший показатель, характеризующий работоспособность электрооборудования и его безопасность для обслуживающего персонала. В большей степени этот параметр касается кабельных линий и соединительных проводов, которые при эксплуатации подвергаются различного рода воздействиям. Методика замеров сопротивления изоляции основывается на законе Ома для электрической цепи.

Согласно этому закону искомый показатель представляется как результат деления напряжения, приложенного к изоляционному покрытию , на величину тока, протекающего через него (Rиз = U/I). Диагностика электропроводки и силовых кабелей – обязательная составляющая профилактических мероприятий, позволяющих поддерживать их работоспособность на должном уровне. Проверка сопротивления изоляции электротехнических объектов проводится с учетом требований действующих нормативов (ПУЭ, в частности).

Типовые причины неисправности изоляционного покрытия

Несмотря на то, что оболочка современных электрических кабелей изготавливается из качественного и прочного материала – она, тем не менее, иногда теряет свои защитные свойства. Последнее обычно объясняется следующими причинами:

Сопротивление изоляции: методы измерения и нормы

  • разрушительное воздействие высокого напряжения и солнечного света;
  • механические повреждения (деформации);
  • нарушения температурного режима;
  • климатические особенности окружающей местности (жара или сильные морозы, например).

Для выяснения степени повреждения и допустимости дальнейшей эксплуатации проводов и кабелей организуются измерения сопротивления изоляции кабельных трасс.

Важно! При обнаружении явного повреждения оболочки кабеля организация и проведение испытаний теряет всякий смысл

В этом случае зона разрушений нуждается либо в ремонте (если это допустимо), либо в полной замене участка кабельной трассы или ответвления проводки.

Своевременно проведенное испытание изоляции на прочность позволяет предотвратить целый ряд неприятных последствий, включая КЗ в электросети, поражение людей высоким напряжением и возникновение пожара.

Нормы сопротивления изоляции для электрических цепей и установок

Нормативные показатели по допустимому сопротивлению изоляции у электроустановок вводятся отдельно для каждого электротехнического объекта отдельно. Требования к этому показателю существенно отличаются для таких типов оборудования, как:

  1. Силовой или сигнальный кабели, прокладываемые в различных условиях эксплуатации.
  2. Действующие промышленные электроустановки с рабочей проводкой.
  3. Бытовые приборы, имеющие внутреннюю разводку и оснащенные сетевым шнуром.

Основной показатель, из величины которого исходят при нормировании допустимого сопротивления изоляции – действующее в контролируемой цепи напряжение. Причем учитывается не только его абсолютное значение, но и тип питания (однофазное или трехфазное). Ниже приводится перечень некоторых электротехнических устройств и цепей с указанием соответствующего им нормы сопротивления изоляции:

  • кабельные проводки, расположенные на местностях и объектах без отклонений климатических условий от нормальных – 0,5 МОм;
  • стационарные электрические плиты –1 МОм;
  • щитовые с расположенными в них электропроводками и кабелями –1 МОм;
  • электротехнические приемники, работающие от напряжений до 50 Вольт – 0,3 МОм;
  • электромоторы и агрегаты с питающим напряжением 100-380 Вольт – не менее 0,5 МОм.

И, наконец, согласно ПУЭ для любых устройств, включаемых в электрические линии с действующим напряжением до 1 кВ, этот показатель не может быть менее 1 МОм. Определить, какое должно быть сопротивление защитной оболочки эксплуатируемого оборудования поможет изучение сопроводительной документации на конкретный образец.

Сопротивление изоляции: методы измерения и нормы

Измерительные приборы

Приборы для измерения сопротивления изоляции условно делятся на две группы. Это: щитовые измерители переменного тока и малогабаритные приборы (они переносятся вручную). Первые образцы применяются в комплекте с подвижными или стационарными установками, имеющими собственную нейтраль. Конструктивно они состоят из релейной и индикаторной частей и способны непрерывно работать в действующих сетях 220 или 380 Вольт.

Чаще всего замеры сопротивления изоляции электропроводки организуются и проводятся с использованием мобильных устройств, называемых мегаомметрами. В отличие от обычного омметра, это прибор предназначается для измерений особого класса, основанных на оценке состояния изоляции при воздействии на нее высокого напряжения.

Обратите внимание: Импульсные посылки амплитудой порядка 1-2 кВ генерируются самим же мегаомметром.

Известные модели этих приборов бывают аналоговыми и цифровыми. В первых из них для получения нужной величины испытательного напряжения используется механический принцип (как в «динамо-машине»). Специалисты нередко называют их «стрелочными», что объясняется наличием градуированной шкалы и измерительной головки со стрелкой.

Эти устройства достаточно надежны и просты в обращении, но на сегодня они морально устарели. Основное неудобство работы с ними состоит в значительном весе и больших габаритах. На смену им пришли современные цифровые измерители, в схеме которых предусмотрен мощный генератор, собранный на ШИМ контроллере и нескольких полевых транзисторах.

Такие модели в зависимости от конкретной конструкции способны работать как от сетевого адаптера, так и от автономного питания (один из вариантов – аккумуляторные батареи). Показания по измерению изоляции силовых кабелей в этих приборах выводятся на ЖК дисплей. Принцип их работы основан на сравнении проверяемого параметра и эталона, после которого полученные данные поступают в специальный блок (анализатор) и обрабатываются там.

Сопротивление изоляции: методы измерения и нормы

Цифровые приборы отличаются сравнительно небольшим весом и малыми размерами, что очень удобно при проведении полевых испытаний. Типичными представителями таких приборов являются популярные измерители Fluke 1507 (фото слева). Однако для работы с электронной схемой нужен определенный уровень квалификации, позволяющий подготовить прибор и получить при измерениях минимальную погрешность. Такой же подход потребуется и при обращении с импортным цифровым изделием под обозначением «1800 in».

Важно отметить, что проверять изоляцию кабельной продукции посредством обычных измерительных приборов не имеет смысла. Для этих целей не годится ни самый «продвинутый» мультиметр, ни любой другой подобный ему образец. С их помощью удастся провести лишь приблизительную оценку параметра, полученного с большим процентом погрешности.

Подготовка к измерениям

Подготовка к проведению испытаний изоляции сводится к выбору прибора, подходящего по своим характеристикам для заявленных целей, а также к организации схемы измерений. Наиболее подходящими для большинства случаев считаются следующие приборы:

  1. Мегаомметры типа М4100, имеющие до пяти модификаций.
  2. Измерители серии Ф 4100 (модели Ф4101, Ф4102, рассчитанные на пределы от 100 Вольт до одного киловольта).
  3. Приборы ЭС-0202/1Г (пределы 100, 250, 500 Вольт) и ЭС0202/2Г (0,5, 1,0 и 2,5 кВ).
  4. Цифровой прибор Fluke 1507 (пределы 50, 100, 250, 500, 1000 Вольт).

Измерение сопротивления изоляции: руководство!

Измерение сопротивления изоляции

Для безопасной работы все электрические установки и оборудование должны иметь сопротивление изоляции, соответствующее определенным характеристикам. Независимо от того, идет ли речь о соединительных кабелях, оборудовании секционирования и защиты, трансформаторах, электродвигателях и генераторах – электрические проводники изолируются с помощью материалов с высоким электрическим сопротивлением, которые позволяют ограничить, насколько это возможно, электрический ток за пределами проводников.

Из-за воздействий на оборудование качество этих изоляционных материалов меняется со временем. Подобные изменения снижают электрическое сопротивление изоляционных материалов, что увеличивает ток утечки, который, в свою очередь, приводит к серьезным последствиям, как с точки зрения безопасности (для людей и имущества), так и с точки зрения затрат на остановки производства.

Регулярная проверка изоляции, проводимая на установках и оборудовании в дополнение к измерениям, выполняемым на новом и восстановленном оборудовании во время ввода в эксплуатацию, помогает избегать подобных инцидентов за счет профилактического обслуживания. Данные испытания дают возможность обнаружить старение и преждевременное ухудшение изоляционных свойств прежде, чем они достигнут уровня, способного привести к описанным выше инцидентам.

Проверка: испытание или измерение?

На первом этапе полезно прояснить разницу между двумя типами проверки, которые часто путают – испытание электрической прочности изоляции и измерение сопротивления изоляции.

 испытание электрической прочности изоляции

Испытание электрической прочности, также называемое «испытание на пробой», позволяет определить способность изоляции выдерживать выброс напряжения средней длительности без возникновения искрового пробоя. Фактически такой выброс напряжения может быть вызван молнией или индукцией в результате неисправности линии электропередачи. Основной целью этого теста является обеспечение соответствия строительным нормам и правилам, касающимся путей утечки и зазоров. Этот тест часто выполняется с использованием напряжения переменного тока, но также при испытаниях применяется и напряжение постоянного тока. Подобный тип измерений требует использования установок для испытания кабелей повышенным напряжением. Результатом является значение напряжения, обычно выраженное в киловольтах (кВ). Испытания электрической прочности в случае неисправности могут быть разрушительными, в зависимости от уровней тестирования и энергетических возможностей инструмента. Поэтому этот метод используется для типового тестирования на новом или восстановленном оборудовании.

Читать статью  2. Заземление молниеотводов

измерение сопротивления изоляции является неразрушающим тестированием.

При нормальных условиях испытаний измерение сопротивления изоляции является неразрушающим тестированием. Этот замер выполняется с использованием напряжения постоянного тока меньшей величины, чем при испытании электрической прочности, и дает результат, выраженный в кОм, МОм, ГОм или ТОм. Значение сопротивления указывает на качество изоляции между двумя проводниками. Поскольку данное испытание является неразрушающим, его особенно удобно использовать для контроле старения изоляции работающего электрического оборудования или установок. Для данного измерения используется тестер изоляции, также называемый мегомметром (доступны мегомметры с диапазоном до 999 ГОм).

Типовые причины неисправности изоляция

Поскольку измерение сопротивления изоляции с помощью мегомметра является частью более широкой политики профилактического обслуживания, важно понимать, по каким причинам возможно ухудшение характеристик изоляции. Только это позволит предпринять правильные шаги для их устранения.

Можно разделить причины неисправности изоляции на пять групп. Однако необходимо иметь в виду, что в случае отсутствия каких-либо корректирующих мер, различные причины будут накладываться друг на друга, приводя к пробою изоляции и повреждению оборудования.

1. Электрические нагрузки

В основном электрические нагрузки связаны с отклонением рабочего напряжения от номинального значения, причем влияние на изоляцию оказывают как перенапряжения, так и понижение напряжения.

2. Механические нагрузки

Частые последовательные запуски и выключения оборудования способны вызвать механические нагрузки. Кроме того, сюда входят проблемы с балансировкой вращающихся машин и любые прямые нагрузки на кабели и установки в целом.

3. Химические воздействия

Присутствие химических веществ, масел, агрессивных испарений и пыли в целом отрицательно влияет на характеристики изоляционных материалов.

4. Напряжения, связанные с колебаниями температуры:

В сочетании с механическими напряжениями, вызванными последовательными запусками и остановками оборудования, также на свойства изоляционных материалов влияют напряжения, возникающие при расширении и сжатии. Работа при экстремальных температурах также приводит к старению материалов.

5. Загрязнение окружающей среды

Плесень и посторонние частицы в теплой, влажной среде также способствуют ухудшению изоляционных свойств установок и оборудования.

В приведенной ниже таблице показана относительная частота различных причин отказа электродвигателя.

Типовые причины неисправности изоляция

Внешние загрязнения изоляции

В дополнение к внезапным повреждениям изоляции из-за таких чрезвычайных происшествий, как, например, наводнения, факторы, снижающие эффективность изоляции работающей установки объединяются, иногда усиливая друг друга. В конечном итоге в долгосрочной перспективе без постоянного мониторинга это приведет к возникновению ситуаций, которые станут критическими с точки зрения безопасности людей и нормальной эксплуатации. Таким образом, регулярное тестирование изоляции установок или электрических машин является полезным способом контроля состояния изоляции, позволяющим предпринимать необходимые действия еще до того, как возникло повреждение.

Принцип измерения сопротивления изоляции и влияющие на него факторы

Принцип измерения сопротивления изоляции и влияющие на него факторы

Измерение сопротивления изоляции базируется на законе Ома. Подав известное напряжение постоянного тока с уровнем ниже, чем напряжение испытания электрической прочности, а затем измерив значение тока, очень просто замерить значение сопротивления. В принципе, значение сопротивления изоляции очень велико, но не бесконечно, поэтому измеряя малый протекающий ток, мегомметр указывает значение сопротивления изоляции в кОм, МОм, ГОм и даже в ТОм (на некоторых моделях). Это сопротивление характеризует качество изоляции между двумя проводниками и способно указать на риск возникновения тока утечки.

На значение сопротивления изоляции и, следовательно, на значение тока, протекающего, когда к тестируемой цепи приложено напряжение постоянного тока, влияет ряд факторов. К таким факторам относятся, например, температура или влажность, которые способны существенно повлиять на результаты измерений. Для начала давайте проанализируем характер токов, протекающих во время измерения изоляции, используя гипотезу о том, что эти факторы не влияют на проводимое измерение.

Общий ток, протекающий в изоляционном материале, представляет собой сумму трех компонентов:

  • Емкость. Для зарядки емкости тестируемой изоляции необходим ток зарядки емкости. Это переходный ток, который начинается с относительно высокого значения и падает экспоненциально к значению, близкому к нулю, когда тестируемая цепь электрически заряжается. Через несколько секунд или десятых долей секунды этот ток становится незначительным по сравнению с измеряемым током.
  • Поглощение. Ток поглощения, соответствующий дополнительной энергии, которая необходима для переориентации молекул изоляционного материала под воздействием прикладываемого электрического поля. Этот ток падает намного медленнее, чем ток зарядки емкости; иногда необходимо несколько минут, чтобы достичь значения, близкого к нулю.
  • Ток утечки или ток проводимости. Этот ток характеризует качество изоляции и не изменяется со временем.

На приведенном ниже графике эти три тока показаны в зависимости от времени. Шкала времени является условной и может различаться в зависимости от тестируемой изоляции.

Для обеспечения надлежащих результатов тестирования очень больших электродвигателей или очень длинных кабелей сведение к минимуму емкостных токов и токов поглощения может занимать от 30 до 40 минут.

На графике три тока показаны в зависимости от времени

Когда в цепь подается постоянное напряжение, суммарный ток, протекающий в тестируемом изоляторе, изменяется в зависимости от времени. Это предполагает значительное изменение сопротивления изоляции.

Перед подробным рассмотрением различных методов измерения было бы полезно снова взглянуть на факторы, которые влияют на измерение сопротивления изоляции.

Влияние температуры

Температура вызывает квазиэкспоненциальное изменение значения сопротивления изоляции. В контексте программы профилактического технического обслуживания измерения должны выполняться в одинаковых температурных условиях или, если это невозможно, должны корректироваться относительно эталонной температуры. Например, увеличение температуры на 10°C уменьшает сопротивление изоляции ориентировочно наполовину, в то время как уменьшение температуры на 10°C удваивает значение сопротивления изоляции.

Уровень влажности влияет на изоляцию в соответствии со степенью загрязнения ее поверхности. Никогда не следует измерять сопротивление изоляции, если температура ниже точки росы.

Коррекция сопротивления изоляции в зависимости от температуры (источник IEEE-43-2000)

Коррекция сопротивления изоляции в зависимости от температуры

Методы тестирования и интерпретация результатов

Кратковременное или точечное измерение

Это наиболее простой метод. Он подразумевает подачу испытательного напряжения на короткое время (30 или 60 секунд) и фиксацию значения сопротивления изоляции на этот момент. Как уже указывалось выше, на такое прямое измерение сопротивления изоляции значительное влияние оказывает температура и влажность, поэтому измерение следует стандартизировать при контрольной температуре и для сравнения с предыдущими измерениями следует фиксировать уровень влажности. С помощью данного метода можно проанализировать качество изоляции, сравнивая текущее измеренное значение с результатами нескольких предыдущих тестов. Со временем это позволит получить более достоверную информацию о характеристиках изоляции тестируемой установки или оборудования по сравнению с одиночным испытанием.

Если условия измерения остаются идентичными (то же самое испытательное напряжение, то же время измерения и т.д.), то при периодических измерениях путем мониторинга и интерпретации любых изменений можно получить четкую оценку состояния изоляции. После записи абсолютного значения, необходимо проанализировать изменение во времени. Таким образом, измерение, показывающее относительно низкое значение изоляции, которое, тем не менее, стабильно во времени, теоретически должно доставлять меньше беспокойства, чем значительное снижение сопротивления изоляции со временем, даже если сопротивление изоляция выше, чем рекомендованное минимальное значение. В общем, любое внезапное падение сопротивления изоляции свидетельствует о проблеме, требующей изучения.

На приведенном ниже графике показан пример показаний сопротивления изоляции для электродвигателя.

пример показаний сопротивления изоляции для электродвигателя

В точке A сопротивление изоляции уменьшается из-за старения и накопления пыли.

Резкое падение в точке B указывает на повреждение изоляции.

В точке C неисправность была устранена (обмотка электродвигателя перемотана), поэтому вернулось более высокое значение сопротивления изоляции, остающееся стабильным во времени, что указывает на ее хорошее состояние.

Методы тестирования, основанные на влиянии времени приложения испытательного напряжения (PI и DAR)

Эти методы включают последовательное измерение значений сопротивления изоляции в указанное время. Их преимуществом является неподверженность особому влиянию температуры, поэтому их можно применять без коррекции результатов, если только испытательное оборудование не подвергается во время теста значительным колебаниям температуры.

Данные методы идеально подходят для профилактического обслуживания вращающихся машин и для мониторинга изоляции.

Если изоляционный материал находится в хорошем состоянии, ток утечки или ток проводимости будет низким, а на начальный замер сильно влияют токи зарядки емкости и диэлектрического поглощения. При приложении испытательного напряжения со временем измеренное значение сопротивления изоляции повышается, так как уменьшаются эти токи помех. Необходимое для измерения изоляции в хорошем состоянии время стабилизации зависит от типа изоляционного материала.

Если изоляционный материал находится в плохом состоянии (поврежден, грязный и влажный), ток утечки будет постоянным и очень высоким, часто превышающим токи зарядки емкости и диэлектрического поглощения. В таких случаях измерение сопротивления изоляции очень быстро становится постоянным и стабилизируется на высоком значении напряжения.

Изучение изменения значения сопротивления изоляции в зависимости от времени приложения испытательного напряжения дает возможность оценить качество изоляции. Этот метод позволяет сделать выводы, даже если не ведется журнал измерения изоляции. Тем не менее, рекомендуется записывать результаты периодических измерений, проводимых в контексте программы профилактического обслуживания.

Показатель поляризации (PI)

При использовании этого метода два показания снимаются через 1 минуту и 10 минут, соответственно. Отношение (без размерностей) 10-минутного значения сопротивления изоляции к 1-минутному значению называется показателем поляризации (PI). Этот показатель можно использовать для оценки качества изоляции.

Метод измерения с использованием показателя поляризации идеально подходит для тестирования цепей с твердой изоляцией. Данный метод не рекомендуется использовать на таком оборудовании, как масляные трансформаторы, поскольку он дает низкие результаты, даже если изоляция находится в хорошем состоянии.

Читать статью  Чем отличается зануление и заземление Статья

Рекомендация IEEE 43-2000 «Рекомендуемые методы тестирования сопротивления изоляции вращающихся машин» определяет минимальное значение показателя поляризации (PI) для вращающихся машин переменного и постоянного тока в температурных классах B, F и H равным 2.0. В общем случае значение PI, превышающее 4, является признаком превосходной изоляции, а значение ниже 2 указывает на потенциальную проблему.

PI = R (10-минутное измерение изоляции) / R (1-минутное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение PI (нормы)

Коэффициент диэлектрической абсорбции (DAR)

Для установок или оборудования, содержащих изоляционные материалы, в которых ток поглощения уменьшается быстро, для оценки состояния изоляции, возможно, будет достаточно провести измерение через 30 секунд и 60 секунд. Коэффициент DAR определяется следующим образом:

DAR = R (60-секундное измерение изоляции) / R (30-секундное измерение изоляции)

Результаты интерпретируются следующим образом:

Значение DAR (нормы)

Метод, основанный на влиянии изменения испытательного напряжения (тестирование с помощью ступенчатого напряжения)

Наличие загрязнений (пыль, грязь и т.п.) или влаги на поверхности изоляции обычно четко выявляется с помощью зависящего от времени измерения сопротивления (PI, DAR и т.д.). Однако этот тип тестирования, проводимый с использованием низкого напряжение относительно диэлектрического напряжения испытываемого изолирующего материала, может иногда пропускать признаки старения изоляции или механические повреждения. Значительное же увеличение прикладываемого испытательного напряжения может, со своей стороны, вызвать повреждение в этих слабых точках, что приведет к существенному уменьшению измеренного значения сопротивления изоляции.

Для обеспечения эффективности соотношение между шагами изменения напряжения должно быть 1 к 5, и каждый шаг должен быть одинаковым по времени (обычно от 1 до 10 минут), оставаясь при этом ниже классического напряжения испытания электрической прочности (2Un + 1000 В). Полученные с помощью данного метода результаты полностью независимы от типа изоляции и температуры, потому что он основан не на внутреннем значении измеряемого изолятора, а на эффективном сокращении значения, получаемого по истечении одного и того же времени для двух разных испытательных напряжений.

Снижение значения сопротивления изоляции на 25% или более между первым и вторым шагами измерения является свидетельством ухудшения изоляции, которое обычно связано с наличием загрязнений.

Метод испытания рассеиванием в диэлектрике (DD)

Тест рассеивания в диэлектрике (DD), также известный как измерение тока повторного поглощения, выполняется путем измерения тока рассеивания в диэлектрике на испытуемом оборудовании.

Поскольку все три составляющие тока (ток зарядки емкости, ток поляризации и ток утечки) присутствуют во время стандартного испытания изоляции, на определение тока поляризации или поглощения может влиять наличие тока утечки. Вместо попытки измерить во время тестирования изоляции ток поляризации при тестировании рассеяния в диэлектрике (DD) измеряется ток деполяризации и ток разряда емкости после тестирования изоляции.

Принцип измерения состоит в следующем. Сначала тестируемое оборудование заряжается в течение времени, достаточного для достижения стабильного состояния (зарядка емкости и поляризация завершена, и единственным протекающим током является ток утечки). Затем оборудование разряжается через резистор внутри мегомметра и при этом измеряется протекающий ток. Этот ток состоит из зарядного тока емкости и тока повторного поглощения, которые в совокупности дают общий ток рассеивания в диэлектрике. Данный ток измеряется по истечении стандартного времени в одну минуту. Электрический ток зависит от общей емкости и конечного испытательного напряжения. Значение DD рассчитывается по формуле:

DD = Ток через 1 минуту / (Испытательное напряжение x Емкость)

Тест DD позволяет идентифицировать избыточные токи разряда, когда поврежден или загрязнен один из слоев многослойной изоляции. При точечных испытаниях или тестах PI и DAR подобный дефект можно упустить. При заданном напряжении и емкости ток разряда будет выше, если поврежден один из слоев изоляции. Постоянная времени этого отдельного слоя больше не будет совпадать с другими слоями, что приведет к более высокому значению тока по сравнению с неповрежденной изоляцией. Однородная изоляция будет иметь значение DD, близкое к нулю, а допустимая многослойная изоляция будет иметь значение DD до 2. В приведенной ниже таблице указано состояние в зависимости от полученного значения DD.

Замер сопротивления изоляции электропроводки: периодичность и правила

Если следовать «Методическим указаниям по испытаниям электрооборудования и аппаратов электроустановок Потребителей» гл. 3.6. ПТЭЭП, то нормы испытания электрооборудования электрических установок, а также периодичность, определяются техническим руководителем того или иного потребителя. Руководитель всегда должен основываться на приложении 3, а также правилах в соответствии с заводскими инструкциями, местных условиях и состоянии электроустановок. Практически для каждого вида электрического оборудования испытания проводятся с различной рекомендуемой периодичностью, которая может изменяться на основании решения технического руководителя потребителя.

Периодичность и нормы испытаний электрооборудования напрямую зависят от требований Раздела I «Общие правила» (гл. 1.8) и от действующих Правил устройства электрических установок, которые можно найти в седьмом издании.

Согласно ПТЭЭП приложение 3.1 таблица 37, элементы электрических сетей подвергаются измерениям сопротивления изоляции в следующие сроки:

  • электрическая проводка, включая осветительные сети, в помещениях с повышенной опасностью, а также в установках наружного использования – 1 раз в год, а во всех других случаях – 1 раз в 3 года.
  • стационарные электрические плитыне реже 1 раза в год в состоянии нагрева;
  • лифты и краныне реже 1 раз в год;

Согласно п. 3.4.12 ПТЭЭП полное сопротивление петли «фаза-нуль» электроприемников во взрывоопасных зонах должно измеряться при капитальном, текущем ремонтах и межремонтных испытаниях, но не реже 1 раза в 2 года. Внеплановые измерения должны выполняться при отказе устройств защиты электроустановок.

Читайте также: Единица измерения мощности – внесистемная и в системе СИ

В иных случаях, периодичность измерения электроустановок и их испытания производятся согласно системе планово-предупредительного ремонта (ППР), утверждением которой должен заниматься технический руководитель потребителя. (ПТЭЭП п. 3.6.3)

Какой пункт правил говорит о периодичности замера

Согласно пункту 2.7.9 Правил технической эксплуатации электроустановок потребителей (ПТЭЭП), осматривать не погруженную в землю часть заземлителя надо хотя бы раз в полгода специалистом, отвечающим за электротехнику, или сотрудником, которого он уполномочил. Во время осмотра необходимо проверить состояние контактов, антикоррозийных покрытий. При осмотре необходимо оценить состояние контактов, состояние изолирующего покрытия.

Согласно пункту 2.12.17, состояние аппаратуры, сопротивление изоляции и заземляющего устройства, проводки для освещения, должны проверяться перед началом их использования. Далее — по графику, составленному отвечающим за электрическую сеть,не менее раза в 3 года. Результаты должны фиксироваться.

Согласно пункту 3.4.12, чаще плана проводить проверки нужно, если возникло нарушение защитных устройств в электротехнике.

Установленная для некоторых видов электротехники частота проверок может только рекомендоваться и корректируется решением ответственного за электросеть. Пункт 3.6.3 гласит, что электроника, которая не упоминается в настоящих нормах, проверяется согласно периоду, установленному отвечающим за электрообеспечение.

Работа над проектом Техническое обслуживание электрооборудования

Виды испытаний электроустановок

Виды испытаний электрооборудования можно разделить на 5 категорий.

  • Типовые – испытания нового оборудования, которое имеет отличные от старых устройств конструкции, материалы, технологии. Типовые испытания проводят на заводе-изготовителе в ходе производства или перед выпуском оборудования на рынок, чтобы удостовериться в соответствии всем требованиям и стандартам.
  • Контрольные – испытание любого электрического изделия непосредственно перед выпуском с завода. В сравнении с типовыми испытаниями, программа контрольных несколько сокращена, но она включает в себя все необходимые проверки на соответствие техническим требованиями и нормам для безопасной эксплуатации приборов, аппаратов, машин и других изделий.
  • Приемо-сдаточные испытания имеют место после завершения монтажных работ. Это обязательное мероприятие для любого оборудования, вводимого в эксплуатацию.
  • Эксплуатационные испытания проверяют оборудование на исправность после капитального ремонта, либо в качестве профилактики – с определенной периодичностью во время эксплуатации электроустановки.
  • Специальные испытания носят исследовательский характер.

Инженерный имеет все необходимые лицензии для испытания электроустановок, слаженный коллектив профессионалов и сертификаты, которые дают право осуществлять все необходимые испытания и замеры. Оставив выбор на электролаборатории «ПрофЭнергия» вы выбираете надежную и качествунную работу своего оборудования!

Если Вы хотите заказать испытания электрооборудования, а также по другим вопросам, звоните по телефону: +7 (495) 181-50-34.

Измерение сопротивления изоляции в соответствии с ПТЭЭП

В соответствии с данными нормативами ответственный за электротехнику должен установить частоту тестирования сопротивления цепи «фаза – ноль», то есть периоды, через которые требуется проводить измерение сопротивления изоляции, а также и частоту измерений цепи между подключенным оборудованием и элементами заземлителя. Однако проведение замеров сопротивления изоляторов электропроводов должно быть чаще, чем раз в 3 года. Визуально проверять проводку необходимо не реже раза в полгода.

Изменение параметров заземлителей с течением времени

Потребность в том, чтобы периодически проверять сопротивление заземления, вызвана изменениями его реального значения с течением времени и в зависимости от климатических условий.

Последнее обстоятельство связано с их зависимостью от множества факторов, основными из которых являются:

  • Ухудшение контакта в зонах сопряжения металлических элементов из-за повышенной влажности.
  • Изменение состояния грунта в месте его обустройства в засушливые и знойные дни.
  • Старение (износ) металлоконструкций и подводящих проводников, которые согласно ГОСТ должны иметь определенную толщину.

Проверять сопротивления заземления можно любым допустимым нормативами способом с привлечением подходящих для этих целей измерительных приборов. Рассмотрим самые известные из этих методик более подробно.

Чем измеряется сопротивление изоляции

Измерения проводятся мегаомметром. Мультиметр не подходит, в большинстве случаев.

Читать статью  Как сделать заземление в доме или бане

Читайте также: Как выбрать сварочный аппарат для скруток медных жил

Устройство имеет 3 основных части:

  • источник постоянного тока;
  • измерительную головку, работающую по принципу двух рамок — одной рабочей, другой противодействующей.
  • переключатель измеряемых пределов.

В составе также имеет токоограничивающие резисторы.

Корпус герметичен, состоит из диэлектрика, на нём расположены:

  • удобная транспортировочная ручка;
  • портативная рукоятка источника тока – генератора, которую надо крутить для генерации тока.
  • переключатель режимов измерений;
  • внешние клеммы, к которым подключаются соединительные провода. Обычно, их 3: З — земля, Э — экран, Л — линия.

Линия и земля применяются при любом тестировании сопротивлений относительно устройства заземления. Экранированный вывод используется, чтобы избавиться от воздействия токов из утечек, когда проводится измерение между параллельно идущими проводами в кабеле и остальных похожих токоведущих частях.

Чтобы его включить, один из измерительных проводов должен иметь специальную конструкцию и его концы необходимо экранировать. При производстве мегаомметра он комплектуется экранированным проводом. Одна из его клемм помечена буквой Э, эта клемма и подключается мегаомметру.

Классификация

Специалисты классифицируют мероприятия в этом направлении по цели их проведения. Виды испытаний электрооборудования:

1. Типовые. Их осуществляют еще на стадии производства. Данный вид инициирует разработчик. Проверяется целесообразность использования технологий и методик изготовления. На этом этапе допускается внесение корректив в производственный цикл. 2. Контрольные. Инициируются заводом-изготовителем. Цель — проверка соответствия техническому регламенту. Это последний этап перед выпуском продукта. В числе прочих исследований — проверка на безопасность для потребителя. Задача — предотвратить выпуск на рынок заведомо недоброкачественной продукции. 3. Приемо-сдаточные. Являются частью внедрения новой системы в производственный процесс. Проводятся по завершении монтажа установки. По сути, данный вид — это разрешение на запуск электросистемы. 4. Эксплуатационные. Проводятся в профилактических целях. 5. Специальные. Это особый вид. Нужен исключительно в исследовательских целях.

Оборудование, используемое для проведения замеров

Мегаомметр – как уже говорили ранее это прибор, с помощью которого измеряются высокие сопротивления изоляторов.

В нем используется большая разница потенциалов, потому мощности его источника тока, в данном случае генератора хватает для того, чтобы не только найти все микроскопические трещины в изоляции проводника, но и он опасен тем, что может сильно навредить организму электрическим поражением.

Чтобы избежать поражения током, согласно правил, использовать мегаомметр разрешено только тем, кто обучен им пользоваться и допущен к работе в работающем оборудовании под напряжением — то есть не меньше, чем третья группа техники безопасности.

Высокое напряжение, подаваемое с мегаомметра, во время замеров сопротивлений изоляций электропроводов, есть на тестируемой электросхеме, соединяющих проводах и клеммах. Чтобы защититься от поражения от них, используются специальные щупы, которые ставятся на измерительную проводку с утолщенной изоляцией.

Составные элементы протокола

Документ заполняется с одной стороны листа. В верхней его части слева прописывается полное наименование исполнителя замера с адресными данными. Также необходима информация того же формата о заказчике. Ниже в бланке расположено название договора. Рядом с ним ставится номер документа, заносимый в регистры. Здесь же ставится дата постановки подписи.

Для удобства предоставления информации конкретные данные о кабелях и их проводимости, согласно проведенным измерениям, представляются в виде двух таблиц. Первая имеет следующие графы:

Читайте также: Флюс для пайки — что это такое и для чего он нужен

  • Порядковый номер.
  • Название присоединения.
  • Марка кабеля, количество жил, их сечение. По возможности нужно указывать, имеется ли на жилах кабеля изоляция и из какого материала состоит проводник (по умолчанию подразумевается медь, но есть и варианты проводников с внешней медной оболочкой, а внутренним содержанием из алюминия). Если исследуется на сопротивление провод, то тоже нужно указать, сколько у него жил, изолирован ли он.
  • Сопротивление изоляции в жиле L–N.
  • Сопротивление изоляции в L–PE.
  • Сопротивление изоляции в N–PE.
  • Заключение о соответствии. Здесь имеется в виду удовлетворение требованиям ПУЭ п. 1.8.37 (7-е изд.) для электропроводок и ПУЭ п. 1.8.40 (7-е изд.) для кабельных линий.

Вторая описывает использующееся при замерах оборудование и состоит из столбцов с такими сведениями, как:

  • порядковый номер;
  • название прибора;
  • тип;
  • заводской номер;
  • диапазон доступных измерений;
  • основная погрешность;
  • номер свидетельства;
  • дата последней проверки;
  • дата очередной проверки прибора.

В обеих таблицах может быть заполнена как одна, так и несколько строк. Замеры совсем без оборудования проводиться не могут, поэтому заполнение второй таблицы при существовании документа обязательно. В самом конце таблиц обязательно указывается нормативный документ (ГОСТ, ПУЭ, СаНПиН, ПТЭЭП, инструкций РД и СО. и пр.), на соответствие которому была проверена изоляция конкретной однофазной цепи.

Исходя из данных таблиц и информации, встречающейся в документах, должен быть сделан вывод: соответствует изоляция проводника заявленным требованиям или нет. Он формулируется в письменном виде, в специальной графе «Заключение». В бланке для этого предусмотрена всего одна строка, так как достаточно будет одного слова или предложения «соответствует» либо «не соответствует».

Методы измерения параметров заземляющих устройств

Известно несколько способов, воспользовавшись которыми удается проверить наличие и померить сопротивление заземлителя с достаточно высокой точностью. Рассмотрим каждый из этих подходов более подробно.

Применение мультиметра

Вопрос о том, как измерить сопротивление заземления мультиметром, не совсем корректен. Сделать это удается лишь при наличии профессионального измерительного оборудования.

Процедура замера сопротивления заземления мультиметром обычно сводится к простейшей проверке подключения заземляющего контакта розетки к защитному контуру. Как это можно проверить посредством тестера и утюга, например, уже было рассмотрено в соответствующей статье. Таким образом, при рассмотрении вопроса измерения заземлений мультиметром под данной процедурой понимают проверку его наличия. Кроме того, этот прибор может пригодиться для выявления скрытых обрывов в цепях или пропадании контактов.

Метод амперметра-вольтметра

При применении этого метода проверки сопротивления заземления потребуется собрать цепочку, одной из составляющих которой станет проверяемое заземляющее устройство. В нее дополнительно включается специальный токовый электрод, называемый «вспомогательным».

Помимо этого в указанной схеме предусматривается еще один – потенциальный электрод (зонд), предназначенный для снятия показаний падения напряжения. Его необходимо установить примерно на равном удалении, как от токового электрода, так и от заземленной точки. Вследствие такого расположения он находится в зоне с практически нулевым потенциалом (фото ниже).

Метод амперметра-вольтметра для измерения сопротивления заземления

Согласно данной схеме замеры сопротивлений заземлений сводятся к снятию показаний напряжения и тока и к последующему вычислению искомой величины по закону Ома R=U/I . Подобный способ испытаний оптимально подходит для загородных и частных домов. Для получения требуемого тока в измерительной цепи можно воспользоваться любым подходящим по мощности трансформаторным устройством. Как вариант, подойдут некоторые модели сварочных агрегатов.

Использование специализированных приборов

Как уже отмечалось, измерять сопротивление заземления простым тестером не представляется возможным (показать реально, сколько Ом составляет сопротивление заземлителя, он не способен). Это относится и к рассмотренной выше схеме с зондом и токовым электродом. Для работы с ними должны использоваться специальные аналоговые приборы следующих типов:

  • Ф4103-М1
  • ИСЗ-2016
  • М-416 (измеритель многофункциональный)
  • ИС-10 (микропроцессорный измеритель)
  • ИС-20/1 (более усовершенствованный прибор)
  • MRU-101 (профессиональный прибор

Для примера можно проследить, как измеряется сопротивление заземления посредством прибора М-416. При работе с ним необходимо действовать по следующему плану:

  1. Сначала следует убедиться в том, что в отсеке прибора имеются элементы питания (3 штуки по 1,5 Вольта, в сумме дающие питающее напряжение 4,5 Вольта).
  2. Затем приготовленный к работе прибор нужно расположить строго горизонтально и прокалибровать его.
  3. Для этого следует установить ручку с указателем в положение «контроль» и, надежно удерживая в нажатом положении кнопку красного цвета, выставить стрелочный указатель на «ноль».

Измерения сопротивления защитного заземления этим прибором осуществляются по той же схеме с двумя электродами.

Схема подключения прибора М-416

После того, как колья вбиты в грунт – к ним подсоединяются провода согласно приведенной схеме (контакты прибора 1, 2, 3 и 4). Затем указатель приборного переключателя «Диапазон» устанавливается в «х1» (фото ниже).

Установка ручки прибора М-416 в положение х1

Потом следует нажать на контрольную кнопку и поворачивать ручку «Реохорд» до того момента, пока стрелка на индикаторе не покажет «ноль». Указанную на шкале реохорда цифру нужно умножить на выбранный диапазон, что и даст в результате измеренное значение.

Обратите внимание: В ситуации, когда показания прибора превышают 10 Ом, переключатель множителя (диапазон) следует установить на более высокое значение: «X5», «X20» или «X100», а затем повторить все описанные ранее операции. Величина сопротивления в этом случае определяется путем умножения показания «Реохорд» на новый масштаб.

Для проведения измерений этим методом могут применяться и более «продвинутые» цифровые приборы, отличающиеся простотой измерений и максимальной точностью. С их помощью можно не только снимать показания, но и сохранять данные измерений во внутренней памяти.

При проведении проверок посредством мегаомметра действовать необходимо согласно инструкции (она похожа на описанные выше процедуры для М-416). Однако перед тем как проверить сопротивление заземления мегаомметром, следует знать, что погрешность снятия показаний в этом случае будет намного выше. Данный факт объясняется заметным отличием исследуемых систем от привычного сопротивления изоляции. Этот прибор больше подходит для проверки сопротивления изоляции электросетей заземляемого оборудования, надежность которой также влияет на безопасность его эксплуатации.

При нарушениях изоляции может наблюдаться неприятный эффект, который объясняется тем, что сопротивление тела человека является достаточно большим для появления на нем опасного потенциала. При случайном прикосновении к оголенному проводнику через тело потечет ток, величина которого достаточна для того, чтобы нанести ему серьезную травму.

Измерение токовыми клещами

Особенность метода замера сопротивления заземления посредством типовых измерительных клещей состоит в следующем:

  • В этом случае отпадает необходимость в отключении заземляющего устройства от обслуживаемого оборудования.
  • Вспомогательные электроды в данной ситуации также не нужны.
  • Появляется возможность оперативно контролировать весь процесс снятия показаний.

Принцип измерения токовыми клещами следующий: протекающий по заземляющему проводнику или шине (являющимися в данном случае вторичной обмоткой) испытательный ток оценивается токовыми клещами по своей величине. После этого посредством вольтметра снимается показание действующего в цепи напряжения.

Для вычисления искомого сопротивления нужно будет разделить полученное значение напряжения в вольтах на измеренную посредством клещей величину тока в амперах.

Источник https://fishkielektrika.ru/soprotivlenie-izolyatsii-metody-izmereniya-normy

Источник https://skomplekt.com/izmerenie-soprotivleniia-izoliatcii/

Источник https://dieselit.ru/osnovy/zamery-soprotivleniya-izolyacii-periodichnost.html

Понравилась статья? Поделиться с друзьями: